• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Deposition from Static Test Fires on Corn and Alfalfa

Mendenhall, Scout 01 May 2013 (has links)
A greenhouse study was conducted to determine the effects of deposition from static rocket test fires on corn and alfalfa. Seeds were germinated in a wide concentration range of depositional material, called test fire soil (TFS). Additionally, the impact of chloride and aluminum, two major components of test fire soil, on germination was also evaluated. Furthermore, plants were grown in packed columns and exposed to test fire soil, either in the root zone or on foliage. Tissue was weighed and analyzed to compare biomass production and plant composition. Corn and alfalfa exposed to test fire soil in the root zone produced less biomass than controls, but foliar treatment had no effect on biomass production. No kernels were produced by corn exposed to test fire soil in the root zone. Leaves of plants exposed to test fire soil in the root zone accumulated more metals and nutrients than controls, whereas plant tissue treated with test fire soil on the leaves contained only elevated levels of aluminum, although levels were still within reasonable concentrations for plants. Germination of seeds was not affected below 1% test fire soil in soil; however higher concentrations of test fire soil decreased percent germination. Addition of chloride to soil also inhibits germination, but addition of aluminum has no effect on germination percentage. Corn germination was restored in test fire soil leached with 200 mm artificial rainwater. The results of this research contribute information regarding the potential impact of test fire soil from static test fires on crop production. Test fire soil inhibits germination and growth if deposited in the root zone, and even foliar application alters tissue composition. However, plant composition is not altered significantly in terms of feed criteria, and germination can be restored by irrigating the TFS. The effects of test fire soil are attributed to high levels of chloride that induce salt stress. Crop damage may be avoided by conducting static test fires after crops are harvested or providing extra irrigation to soil impacted with the TFS.

Page generated in 0.1036 seconds