Spelling suggestions: "subject:"aluminummagnesium"" "subject:"aluminiummagnesian""
31 |
Metastable phases in mechanically alloyed Al-Mg powdersSingh, Devender 01 July 2003 (has links)
No description available.
|
32 |
Hot Cracking Susceptibility Of Twin Roll Cast Al-mg AlloysTirkes, Suha 01 October 2009 (has links) (PDF)
Increasing use of aluminum alloys in the automotive industry increases the importance
of the production of sheet aluminum. To provide cost effective sheet aluminum to the
industry, twin-roll casting (TRC) is becoming more important compared to DC casting.
Demand for usage of different aluminum alloys in sheet form introduces some
difficulties that should be considered during their applications. The main problem
encountered during the welding of aluminum alloys is hot cracking. The aim of this
study is to understand the difference in hot cracking susceptibility of two twin roll cast
(TRC) aluminum-magnesium alloys (5754 and 5049 alloys) during welding. Varestraint
test method was used to evaluate the effect of welding parameters, strain levels, filler
alloys and mid-plane segregation on hot cracking susceptibilities.
Hot cracking susceptibility of both 5049(Al-2wt%Mg) and 5754(Al-3wt%Mg) alloys
increased with increasing strain level. Also, it was observed that hot cracking
susceptibility was higher for the alloy having higher magnesium content. Thermal
analysis results verified that hot cracking susceptibility indeed can be related to the
v
solidification range. As is suggested in the solidification range approach, the results of
the present study confirm that the extent of solidification and liquation cracking depend
on the magnitude of solidification range and the strain imposed during welding. Hot
cracking susceptibility of 5754(Al-3wt%Mg) alloy has shown slightly decreasing
behavior with addition of 5356 filler alloy. On the other hand, addition of 5183 filler
alloy has increased solidification cracking susceptibility of two base alloys. The fracture
surfaces of liquation and solidification cracks were investigated by scanning electron
microscope with EDS. Liquation crack surfaces of the 5754(Al-3wt%Mg) alloy were
found to have high Mg and Si content. For the 5754(Al-3wt%Mg) alloy, a quench test
was designed to observe the effect of mid-plane segregation zone. It was observed that
there was a eutectic reaction resulting in formation of liquid phase below solidus
temperature of 5754(Al-3wt%Mg) alloy. Moreover, internal cracks have formed at the
mid-plane segregation zone after Varestraint test. Results show that 5049(Al-2wt%Mg)
alloy should be chosen compared to 5754(Al-3wt%Mg) alloy for welding. Moreover,
low line energy should be applied and filler alloys with high magnesium content should
be used during welding to decrease hot cracking tendency of welds.
|
33 |
Solid-state production of single-crystal aluminum and aluminum-magnesium alloysPedrazas, Nicholas Alan 23 December 2010 (has links)
Three sheet materials, including high purity aluminum, commercial purity aluminum, and an aluminum-magnesium alloy with 3 wt% magnesium, were produced into single-crystals in the solid-state. The method, developed in 1939 by T. Fujiwara at Hiroshima University, involves straining a fully recrystallized material then passing it into a furnace with a high temperature gradient at a specific rate. This method preserves composition and particulate distributions that melt-solidification methods do not. Large single crystals were measured for their orientation preferences and growth rates. The single-crystals were found to preferably orient their growth direction to the <120> to <110> directions, and <100> to <111> directions normal to the specimen surface. The grain boundary mobility of each material was found to be a function of impurity content. The mobility constants observed were similar to those reported in the literature, indicating that this method of crystal growth provides an estimate of grain boundary mobility. This is the first study the effect of impurities and alloying to this single-crystal production process, and to show this method’s applicability in determining grain boundary mobility information. / text
|
34 |
Development of Al- and Mg-based nanocomposites via solid-state synthesisAl-Aqeeli, Naser. January 2007 (has links)
Mechanical milling (alloying) is one of the non-equilibrium techniques used to prepare alloys with exceptional properties. This technique was employed in this research to develop a new class of Al- and Mg-based nanocomposite alloys using SPEX high energy milling. These nanocomposites are characterized by the dispersion of nanocrystals in an amorphous matrix. Zirconium was added to the Al-Mg alloys for the purpose of promoting glass formability. As-milled samples were annealed at 400°C for 1 hour to investigate the thermal stability of the nanostructure. The phase evolution of the resulting alloys was studied using XRD and TEM/EDS, which showed a strong dependence of the resulting metastable phases on the starting alloys compositions. / The nanocomposite structure was developed at Zr concentrations of 20 and 35 at.% regardless of the Al/Mg ratio and with some traces of oxidation. However, the amount of amorphous phase was varied in each case depending on the Al concentration into the alloy, since in low Al-containing alloys the amount of amorphous phase was less pronounced. It was found that higher Zr concentrations will lead to greater refinement of the nanostructure. These nanocomposites showed improved mechanical properties, in terms of higher hardness values, in addition to improved thermal stability. The improvement in thermal stability was attributed to the presence of Al3Zr which proved to contribute significantly to retarding grain growth via grain boundary pinning. / Additionally, the employment of mechanical alloying was beneficial in producing Al3Zr in the cubic L12 ordered structure which improves the ductility of the alloy. Moreover, the homogeneity ranges of gamma-Al 12Mg17 and Al3Zr were extended significantly due to the nature of the non-equilibrium processing. In this research, the alloy with the maximum hardness was Al40Mg25Zr35, which has an average hardness value close to 780 HV and average crystallite size of about 10 nm. A common observation in the alloys that showed a higher hardness values combined with improved thermal stability, is that they contain higher Al and Zr concentrations. / Le broyage mécanique est une technique hors équilibre qui permet la fabricationde nouveaux alliages avec des propriétés exceptionnelles. Lors de cette recherche, unbroyeur SPEX 8000 a été utilisé pour développer une nouvelle classe denanocomposites à base d'aluminium et de magnésium. Ces nanocomposites tirent leurspécificité de leur dispersion de nanocrystaux dans une matrice amorphe. Duzirconium a été ajouté aux alliages d'aluminium et de magnésium pour promouvoirl'amorphisation. Les échantillons de poudres broyées ont été recuits à 400°C pour 1heure pour évaluer la stabilité thermique des différentes phases. Leur évolution a étécaractérisée par diffraction par rayon-X et par MEBIEDS. TI fut démontré que lesphases métastables obtenues dépendent fortement de la composition des alliages dedépart.
|
35 |
The kinetics of incongruent reduction between sapphire and Mg-Al meltsLiu, Yajun 03 April 2006 (has links)
The kinetics of incongruent reduction between sapphire and oxygen-controlled Mg-Al melts was studied by measuring spinel-layer thickness, sample-weight change and sample-thickness change as a function of time at various temperatures. To eliminate the crucible contamination caused by impurities in commercial MgO crucibles, self-made high-purity MgO crucibles were achieved by gelcasting method, which is an attractive ceramic-forming technique for making high-purity ceramic parts. The oxygen-controlled alloys were obtained by the three-phase-equilibrium experiments at various temperatures. To avoid MgO formation, the oxygen-controlled alloys prepared at relatively lower temperatures were used for incongruent reaction at relatively higher temperatures. That is to say, the oxygen-controlled alloys prepared at 900°C, 1000°C, and 1100°C were used for spinel formation at 1000°C, 1100°C, and 1200°C, respectively. The experiments were conducted in a vertical furnace, and sapphire wafers were hung vertically in high-purity MgO crucibles so that the natural convection induced by the density change in the melt could be investigated. Experimental results obtained at 1000°C, 1100°C, and 1200°C showed that the spinel layer thickness on two kinds of sapphire wafers, namely {0001} and , followed orientation-independent parabolic kinetics, indicating the diffusion in spinel was one of the rate-limiting steps. In addition, the spinel layer thickness was not a function of position. The results of sample-thickness- change measurements also indicated that the effect of natural convection could be neglected. XPS, XRD, and TEM were also employed to characterize some samples in this study. Based on a simple model where the diffusion in spinel was the only rate-limiting step, the governing partial differential equations for diffusion and fluid dynamics were solved by the finite element method. The calculated theoretical parabolic constants at various temperatures were compared with these experimental results, and a good agreement was obtained. Some preliminary studies were also made on the morphologies of spinel particles at the nucleation stage. It was found that the triangular {111} faces of spinel particles were parallel to the surface of {0001} sapphire substrate. The product shape was consistent with the tetrahedron composed of {111} faces. The morphology of spinel particles on a sapphire substrate was more complicated in that the triangular {111} faces of spinel had to be inclined at a certain angle to the substrate in order to maintain the orientation relationship.
|
36 |
Étude de la mouillabilité des particules granulaires par les alliages d'aluminium durant la filtration d'aluminium /Ergin, Guvenc, January 2006 (has links)
Thèse (D.Eng.) -- Université du Québec à Chicoutimi, 2006. / La p. de t. porte en outre: Thèse présentée à l'Université du Québec à Chicoutimi pour l'obtention du doctorat en ingénierie. CaQCU Bibliogr.: f. 130-147. Document électronique également accessible en format PDF. CaQCU
|
37 |
Molecular dynamics simulations of metalsJelinek, Bohumir, January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Physics and Astronomy. / Title from title screen. Includes bibliographical references.
|
38 |
Lead-induced solid metal embrittlement of aluminum-magnesium-silicon alloys at ambient temperaturesKim, Young-Sub January 1990 (has links)
No description available.
|
39 |
Development of Al- and Mg-based nanocomposites via solid-state synthesisAl-Aqeeli, Naser January 2007 (has links)
No description available.
|
40 |
Kinetics Of Pressureless Infiltration Of Al-Mg Alloys Into Al2O3 Preforms : A Non-Uniform Capillary ModelPatro, Debdutt 12 1900 (has links)
Al-Mg alloys spontaneously infiltrate into porous ceramic preform in a nitrogenous
atmosphere above 750 °C with Mg either pre-alloyed or introduced at the interface to
initiate the process. The governing process variables are temperature, alloy composition, atmosphere and particle size of the porous preform. The present study
investigates the flow kinetics of Al-Mg melts into porous Al2O3 preforms as a
function of particle size of the preform from the standpoint of a physical phenomena
fluid flow through a non-uniform capillary.
Pressureless infiltration involves two major stages: (a) initiation associated with an
incubation period and, (b) continuation where the melt infiltrates the preform. Long
(~1 hr) and irreproducible incubation periods are typically observed in the Al-
Mg/Al2O3 system when the samples are slowly heated in N2 atmosphere. Such lengthy periods prior to infiltration also lead to excessive Mg loss from the system. In order to accurately measure infiltration rates during the continuation stage, the incubation period was minimized by upquenching samples in air under self-sealing
conditions. Interrupted experiments reveal that infiltration occurs within 5 mins.
Different phenomena are expected to dictate the capillary rise kinetics through the
porous ceramic post-incubation (more specifically, retard the melt movement)
(a) triple-point ridging of the melt meniscus on the alumina surface (meniscus
pinning)
(b) interfacial reaction limited wetting and infiltration
(c) pore size and distribution of the porous ceramic
(d) melt (Al-Mg) / atmosphere (N2) reaction to form products inside the pore space
(decrease in permeability)
(e) time-dependent loss of Mg from the system (time-dependent contact angle)
Some of the above phenomena viz., fluid flow inside the porous medium and
chemical reaction of the melt with the reinforcement are invariably coupled in a
complex manner. The contribution of each phenomenon to the kinetics of infiltration
(a) and (e) was investigated separately.
Triple-line ridging
Al sessile drops on alumina substrate spread 4-5 orders of magnitude slower than that
predicted by hydrodynamic equilibrium. The melt is pinned by ridges leading to
spreading rates of 0.4-4 mm/hr in contrast to viscous drag controlled spreading rates
of 1-10 mm/sec. In order to detect ridging in the Al-Mg/Al2O3 reactive couple,
uniform Al2O3 capillaries were infiltrated. Experiments were conducted under sealed
configuration with metal on both sides of the capillary and Mg turnings at the
interface. The uniform capillary itself was placed inside an alumina preform and the
assembly upquenched to 800-900 °C to minimize evaporative loss of Mg. Examination of the inner walls of the capillary after leaching away the infiltrated metal shows rough, granular features on the polycrystalline Al2O3 surface. No continuous ridges were seen. EDS of the granular phase suggested stoichiometry of spinel, MgAl2O4, formed as a result of the reaction between the melt and the capillary. From interrupted experiments the average infiltration rate inside the uniform capillary was calculated to be in the ballpark range of 2-6 µm/sec (which is a lower limit to the meniscus velocity), an order of magnitude faster than the spreading rates observed during triple-line ridging (0.1 – 1 µm/sec) indicating that the melt front pinning was not the operative mechanism for influencing infiltration kinetics.
Pore size distribution of porous medium
Additionally, infiltration was found to be faster in uniform channels (fractures in a
preform, annular spaces and aligned pores in freeze-cast preforms) compared to the
randomly packed bed itself. The effect of pore size on infiltration kinetics was studied by varying the particle size of the packed bed.
Experiments were conducted for two systems (a) non-reactive liquid polyethylene
glycol PEG 600 (b) reactive Al-Mg melts into packed alumina beds as a function of
particle size and temperature. The PEG 600 / Al2O3 ‘model’ system was used to benchmark the effect of pore size and distribution of the particle bed on flow kinetics from a purely physical standpoint. Typically, a Washburn type of ‘parabolic’ kinetics was observed for the non-reactive couple and the ‘effective’ hydrodynamic radius, reff
was extracted. (For a uniform capillary, reff and the physical radius of the capillary are the same).
Surprisingly, the ‘Washburn’ radius was found to be 1-2 orders of magnitude smaller
than the average pore size and even smaller than the minimum average pore size of the compact. The ‘Washburn’ radii for infiltration of Al-Mg melts was a further order of magnitude smaller than the corresponding values for infiltration of non-reactive PEG 600 through the same packed beds.
Non-uniform capillary model
To predict the infiltration kinetics through porous media, a sinusoidal capillary model
was developed based on the pore size distribution. The input parameters for the model were the average pore neck size and average pore bulge size, which were extracted
from the experimentally measured pore size distribution. The flow was assumed to be
quasi-steady state and laminar. Hagen-Poiseuille’s equation was employed to
calculate the total pressure drop, which was equated with the instantaneous pressure
drop across the meniscus. The meniscus velocity within the non-uniform capillary
was solved numerically based on the instantaneous pressure drop.
The infiltration profile for the sinusoidal capillary displayed jumps associated rise in
the narrow segments of the profile while the rise through the broad segment was
considerably slow. The overall infiltration profile could be fitted by a parabolic
Washburn-type equation. The ‘effective’ hydrodynamic radius of such a sinusoidal
capillary was found to be 2-3 orders of magnitude smaller than the average capillary
size and even smaller than the narrowest opening of the sinusoidal capillary. The
overall kinetics was limited by flow through the broad segment of the profile where
the capillary driving force is the lowest coupled with a large viscous retarding force
due to the narrow feeding segment thereby leading to extremely slow flow rates. The
calculated ‘effective’ radius of the sinusoidal capillary (reff = 0.03 µm) based on the pore size distribution of the 25-37 µm (1.4-10.8 µm) packed bed was similar to the experimentally observed ‘effective’ radius for flow in the non-reactive couple (reff = 0.06 µm) implying good agreement between experiments and modeling. The model was extended for the case of pressure infiltration of Al melts into SiC &
TiC compacts reported in the literature, under conditions where chemical reactions are
negligible. A good agreement to within a factor of 4 between the observed kinetics
and the ones predicted by the current model is observed.
In order to understand the origin of this ‘unphysical’ radius dictating capillary rise, the physics of flow through a stepped capillary was analysed. The kinetics of flow through the wide segment could be expressed by an ‘effective’ drodynamic radius r 4min
based on geometrical parameters of the stepped capillary as: reff= r3max
(Wetting situation) where rminand rmax are the radii of the narrow and broad segments of the capillary. The ‘effective’ radius from the above equation matched well with the
numerically derived ‘effective’ radius for flow through the stepped capillary. A
r 2
similar expression for flow under applied pressure was derived as: reff= min rmax (non-
wetting situation) which is strictly correct for large values of applied pressure.
Chemical reactions influencing infiltration kinetics:
Upquenched samples (time-dependent contact angle due to Mg loss) The previous investigation of fluid flow in porous media from a purely physical standpoint reveals the dominant role of the pore size and distribution in the porous medium in controlling infiltration kinetics. This however, is accurate only if chemical
factors are minimized. In case of the upquenched experiments for the Al-Mg/Al2O3
system, the ‘effective’ radius was determined to be an order of magnitude smaller than that for the PEG 600/Al2O3 couple implying additional chemical factors
influencing flow kinetics in this reactive system. Experiments with Mg turnings mixed with the powder bed shows faster infiltration compared to the ones where the
entire Mg was placed at the interface showing that local availability of Mg was
responsible for slower infiltration kinetics.
Diminishing Mg at the melt front, leads to increase of surface tension and increase in
contact angle. This was modeled by incorporating a kinetics (time-dependent) contact angle into the sinusoidal capillary model developed for non-reactive infiltration. The infiltration kinetics was found to be retarded in the case of a kinetic contact angle. Thus, both flow retardation through a packed bed and time-dependent variations of contact angle due to Mg loss from the system are responsible for slow pressureless infiltration kinetics of Al-Mg melts inside Al2O3 preforms.
The infiltration kinetics predicted by the sinusoidal capillary model thus defines an
upper envelope to the rate of infiltration and subsequent composite formation for such
a process governed by fluid flow; all other factors if present in effect, retard the
kinetics further.
Samples processed in N2 atmosphere (reduced permeability due to AlN formation) The more practical case of composite fabrication (PRIMEXTM process) by pressureless infiltration of Al-Mg melts in a flowing N2 containing atmosphere was also examined. The kinetics of infiltration of Al-Mg melts in a flowing N2-H2 atmosphere (pO2 ~ 10-20atm) for different particle sizes of the packed bed was investigated. A large scatter in the infiltrated heights was observed and the absolute infiltration rates could not be established. Moreover, incubation periods were seen to range from 1-2 hours for different particle sizes. Post-incubation, the infiltration kinetics for a wide range of particle sizes was found to be approximately an order of magnitude slower than that for the upquenched samples. Microstructural investigations of the etched samples revealed significant AlN formation at the start of the composite near the preform/billet interface. This reduced the cross-sectional area available for melt flow and possibly led to long incubation periods encountered in the process. AlN formation was also detected in the matrix on the particle surfaces as well as in the interior of the matrix. This reduced the permeability of the compact and increased the hydrodynamic resistance for flow through the porous compact leading to slower infiltration kinetics. Thus both AlN formation in the matrix and Mg loss from the melt retard capillary flow of the melt through the porous ceramic over and above the intrinsic hydrodynamic resistance for flow through the packed bed.
Role of atmosphere on the pressureless infiltration process
The role of atmosphere in promoting the pressureless infiltration process was
examined by using different processing atmospheres such as vacuum, N2-H2 and Ar
and combinations thereof. It is known that the pressureless infiltration of Al melts into porous Al2O3 preforms requires both N2 and a critical level of Mg in the system.
Samples heated under vacuum and Ar to 900 °C under open conditions did not infiltrate. Rather these showed discoloration related to the formation of MgAl2O4 on the particle surface due to reduction of Al2O3 by Mg vapour. Moreover, samples heated in Ar upto 500 °C followed by heating up in N2-H2 till 900 °C did not infiltrate indicating irreversible changes. Interestingly enough, if the samples were heated in vacuum upto 700 °C followed by N2-H2 at 900 °C, infiltration was observed. Dewetted regions of the compact were seen too adjacent to the preform-billet interface. This indicated a minimum critical partial pressure of N2, which promotes infiltration. From an analysis of the different interfacial energies and their dependence on atmosphere, it was concluded that either an increase in the solid-vapour interfacial energy (~ 10%) or a decrease in the solid-liquid interfacial energy (~ 10%) would lead to a decrease in the contact angle, θ, by 10°, large enough to ensure wettability and
infiltration in certain atmospheres. It was also established that Mg infiltrates into porous Al2O3 both in N2-H2 as well as
Ar under sealed conditions. So the presence of a minimum partial pressure of N2 favouring wettability was specific to the Al-Mg/Al2O3 system.
(pl see the original document for formulas)
|
Page generated in 0.0513 seconds