• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amine-functionalized polymeric hollow fiber sorbents for post-combustion CO2 capture

Li, Fuyue 12 January 2015 (has links)
Polymeric hollow fiber sorbents were functionalized with amine moieties for improving the carbon dioxide sorption capacity from flue gas to reduce the greenhouse gas emissions from coal-fired power plants. Three different experimental pathways were studied to form the amine-functionalized hollow fiber sorbents. Aminosilane functionalized cellulose acetate (CA) fibers, polyethyleneimine (PEI) functionalized polyamide-imide (PAI, Torlon®) fibers and PEI post-infused and functionalized Torlon®-silica fibers were formed. CO2 equilibrium sorption capacity data were collected by using the pressure decay sorption cell and thermal gravimetric analyzer. Other physio-chemical properties of the amine-functionalized fiber sorbents were characterized by using fourier-transform infrared spectroscopy, elemental analysis, and scanning electronic microscopy. Different reaction conditions were studied on the effect of sorption isotherms. Aminosilane-CA fibers were the first proof-of-concept for forming the amine functionalized polymer hollow fibers. PEI-PAI fibers were designed as a new method to reach enhanced sorption capacities than Aminosilane-functionalized CA fibers. PEI post-infused and functionalized Torlon®-silica fibers have further enhanced sorption capacity; however they easily degrade with similar reaction for forming PEI-PAI fibers. Lumen-side barrier layers were created successfully via post-treatment technique of using the crosslinked Neoprene® polymer onto PEI-functionalized PAI fibers. PEI-functionalized PAI fibers also have good cyclic stability and low heat of sorption.
2

Amine-functionalized polymeric hollow fiber sorbents for post-combustion CO₂ capture

Li, Fuyue 12 January 2015 (has links)
Polymeric hollow fiber sorbents were functionalized with amine moieties for improving the carbon dioxide sorption capacity from flue gas to reduce the greenhouse gas emissions from coal-fired power plants. Three different experimental pathways were studied to form the amine-functionalized hollow fiber sorbents. Aminosilane functionalized cellulose acetate (CA) fibers, polyethyleneimine (PEI) functionalized polyamide-imide (PAI, Torlon® fibers and PEI post-infused and functionalized Torlon®-silica fibers were formed. CO₂ equilibrium sorption capacity data were collected by using the pressure decay sorption cell and thermal gravimetric analyzer. Other physio-chemical properties of the amine-functionalized fiber sorbents were characterized by using fourier-transform infrared spectroscopy, elemental analysis, and scanning electronic microscopy. Different reaction conditions were studied on the effect of sorption isotherms. Aminosilane-CA fibers were the first proof-of-concept for forming the amine functionalized polymer hollow fibers. PEI-PAI fibers were designed as a new method to reach enhanced sorption capacities than Aminosilane-functionalized CA fibers. PEI post-infused and functionalized Torlon®-silica fibers have further enhanced sorption capacity; however they easily degrade with similar reaction for forming PEI-PAI fibers. Lumen-side barrier layers were created successfully via post-treatment technique of using the crosslinked Neoprene® polymer onto PEI-functionalized PAI fibers. PEI-functionalized PAI fibers also have good cyclic stability and low heat of sorption.
3

Synthesis and Study of Modified-Nanocrystalline Cellulose Effective for SO2 Capture

Zafari, Raheleh 20 December 2021 (has links)
One of today’s world's main challenges is access to a clean environment. The release of hazardous and toxic gases from burning fossil fuels is of critical concern due to these gases' destructive effects on the nearby atmosphere. Among these, acid rain is one of the most severe consequences of air pollution caused by sulfur dioxide (SO2) gas and still needs to be better addressed. One of the solutions is the adsorption-based technologies because of their ease of use, possible high adsorption capacity, minimum environmental impact, low cost, and efficient sorbate recovery possibilities. Gas separation via adsorption is not yet widely employed commercially since it needs regenerable, high-durable, high-performance, and cost-effective adsorbents. One of the common methods of absorbing acid gases is the use of amino absorbents that have disadvantages such as create many waste materials challenging to regenerate, wastewater, and waste gas. Therefore, incorporating amine groups on the surface of solids to overcome the problem of regeneration has attracted considerable attention in gas uptake. In this project, we proposed to functionalize nanocrystalline cellulose (NCC) using a solvent-free method to boost their SO2 interactions and thus their adsorption capability. Therefore, a commercial NCC material was modified using ethylenediamine (EDA) in green and straightforward amination approach in order to tune its surface basicity and obtain an efficient green-biobased adsorbent. Since the substitution process of amines with hydroxyl groups on the cellulose surface is carried out through dangerous halogen solvents, we used the solvent-free one-step method and investigated the synthetic parameters. Amination conditions of NCC adsorbents were optimized via the effects of the amination temperature, the amination time, and the amount of EDA on their physical properties and their performance for SO2 adsorption. The sorbents were characterized using attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR), solid carbon nuclear magnetic resonance (13CNMR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy- energy-dispersive X-ray spectroscopy (SEM-EDS) to see if EDA was incorporated into the NCC and investigate the changes in thermal stability of adsorbents by changing synthesis conditions. Sorbents were then tested for SO2 capture at the same conditions of room temperature (RT), atmospheric pressure, and a flow rate of 20 ml/min, which was selected based on previous studies to optimize flow rate in the same research group. The optimal conditions to create an effective sulfur dioxide adsorbent were found to be 70 oC for 8 hours of amination. At ideal conditions, the NCC modified had an SO2 adsorption capacity value of 0.030 mg/100 mg. The promising properties of EDA-NCC in terms of adsorption capacity (showing a significant increase in capacity when compared to the NCC at atmospheric pressure and ambient temperature) make them potential adsorbent candidates. In addition, the impacts of SO2 capture operating conditions on adsorption capacity were evaluated. By varying the adsorption temperature from room temperature to 60 °C and the feed flow rate from 10 to 30 ml min-1, fixed-bed breakthrough studies for SO2 adsorption onto NCC and modified-NCC adsorbent (prepared at 70oC, 3hr, and EDA/NCC=25) were carried out. Over the range of operating parameters studied, the greatest SO2 capacity and breakthrough time values were obtained with adsorbent at room temperature and 20 ml min-1 input flow rate. As expected, due to the exothermic nature of the adsorption process, the amount of SO2 adsorbed at equilibrium decreased with increasing temperature. It was also observed that as the flow rate increases, the breakthrough time decreases due to the higher flow rate of the feed gas was accompanied by the faster transport of the adsorbate molecules and leading to a shorter breakthrough time, as expected. Finally, another EDA functionalization method was tested, using a two-step method. First, cellulose was functionalized using citric acid (CA), and then the EDA was incorporated via carboxylic acid functional groups in the CA to obtain both amide and amine groups on the NCC’s surface. This approach aimed to compare EDA deposition on cellulose surface via a different method by adding one more functional group and evaluating their performance in SO2 gas adsorption. It was concluded that oxygenated functional groups and groups with low alkalinities, such as carboxylic acid and amide, can negatively affect gas adsorption. These results were concluded by comparing two adsorbents, one containing only amine groups and the other adsorbent containing amide and carboxylic acid groups in addition to the amine group, although the amine content of the two adsorbents was different. Future research will explore the mechanisms and capturing phenomena to improve capturing capacity and process applicability as well as the material optimal regeneration operating conditions.
4

Stereoselective Functionalization of Carbonyl Compounds and N-Alkylamines Promoted by Cooperative Catalysts:

Chan, Jessica Zee January 2020 (has links)
Thesis advisor: Masayuki Wasa / This dissertation describes the development of cooperative catalyst systems for the functionalization of monocarbonyl compounds and stereoselective transformations of alpha-C–H bonds of N-alkylamines, inspired by the concepts of frustrated Lewis pairs (FLPs). Prior to this dissertation research, practical and broadly applicable C–C and C–heteroatom bond forming reactions involving the FLP complexes that provide synthetically desirable products with high enantioselectivity remained to be developed. Chapter 1 of this dissertation describes the recent advances in the transformations involving FLPs and B(C₆F₅)₃-catalyzed reactions. Inspired by the unique capability of FLP catalysts to activate otherwise unreactive molecules, and circumvent undesirable acid–base complexation, we have developed potent cooperative acid/base catalysts for C–C bond forming reactions of various monocarbonyl compounds and an appropriate electrophile, which will be discussed in Chapter 2. Another reactivity of FLPs to be explored has to do with the catalytic and enantioselective reactions of N-alkylamines, where two Lewis acid catalysts with potentially overlapping functions, work cooperatively to activate alpha-amino C–H bonds and promote the enantioselective C–C bond forming reaction between N-alkylamines and a nucleophilic species. In Chapter 3, B(C₆F₅)₃-catalyzed union of N-alkylamines and silicon enolates followed by the enantioselective B(C₆F₅)₃/Mg–PyBOX-catalyzed alpha-alkylation of N-alkylamines and alpha,beta-unsaturated compounds to form beta-amino carbonyl compounds will be described. In Chapter 4, B(C₆F₅)₃/Cu–PyBOX-catalyzed alpha-C–H alkynylation of N-alkylamines and the applications in late-stage functionalization and stereoselective synthesis will be discussed. / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
5

SYNTHESIS OF FUNCTIONALIZED [2.2] PARACYCLOPHANE PRECURSORS FOR FUNCTIONAL POLY(PARA-XYLYLENE) THIN FILM DEPOSITION

Rahimi Razin, Saeid 12 March 2015 (has links)
Functionalized poly(para-xylylene) (PPX) coatings can be useful for biomaterials applications due to their biocompatibility and useful chemistry for the immobilization of biomolecules. However, their application is not widespread due to the difficulty in synthesizing the corresponding precursors. Here, a two-step method for amine functionalization of [2.2]paracyclophane (PCP) via direct nitration and reduction is developed. Nitration at super acidic conditions and temperatures as low as -78 °C, improved the stability of PCP toward strong acids and successfully minimized side reactions such as oxidation and polymerization. This procedure resulted in quantitative yields of 4-nitro-PCP, which was successively reduced by Raney nickel catalysis with sodium borohydride. Compared to the many other reduction systems, this method is simple, inexpensive and applicable in large scales. Additionally, carboxylation of PCP using the Freidel-Crafts acylation was attempted and so far, we have been able to show the synthesis of intermediate acylated products. Then, through the chemical vapour deposition polymerization of amino-PCP amine-functionalized poly(para-xylylene) (PPX-A) thin films were coated on Si wafer substrates. The substrates coated with PPX-A showed a higher surface energy compared with those of coated with un-substituted or chlorine substituted PPX films. Furthermore, results of the surface characterization demonstrated that the CVD process was able to transfer the functionalities of the precursors to deposited polymer films without alteration. However, the stability of primary amine groups in air and aqueous solutions is a matter of concern. Aging of amino-PCP and corresponding PPX-A films showed a decrease in the amount of primary amines which was accompanied by the appearance and increase of oxygen, indicating that the decrease of available amine groups is associated with oxidation. Nevertheless, both aminated precursor and polymer films remained intact under argon. The method presented here has great potential for widespread application of PPX-A as a convenient biomaterial for microarrays and cell culture. / Thesis / Master of Science (MSc)
6

SYNTHESIS OF FUNCTIONALIZED [2.2]PARACYCLOPHANE PRECURSORS FOR FUNCTIONAL POLY(PARA-XYLYLENE) THIN FILM DEPOSITION

Rahimi Razin, Saeid January 2015 (has links)
Functionalized reactive polymer coatings can be used in various biomaterials applications such as immunoassays and biomolecule immobilization. Poly(para-xylelene) is a relatively new biomaterial that has attracted attention over the past few decades in these areas due to its unique properties and biocompatibility. The introduction of functionalized, particularly aminated, poly(para-xylylene) will extend the application of these polymer coatings to a wide variety of biological studies. However, their application is not widespread due to the difficulty in synthesizing the corresponding precursors. Here, a two-step method for amine functionalization of [2.2]paracyclophane via direct nitration and reduction is developed. Nitration at super acidic conditions and temperatures as low as -78 °C, improved the stability of [2.2]paracyclophane toward strong acids and successfully minimized side reactions such as oxidation and polymerization. This procedure resulted in quantitative yields of 4-nitro[2.2]para-cyclophane, which was successively reduced by Raney nickel catalysis with sodium borohydride. Compared to the many other reduction systems, this method is simple, inexpensive and applicable in large scales. It does not require harsh reaction conditions and within short reaction times, delivers quantitative amounts of the reduced product. At the end, 4-amino[2.2]paracyclophane was collected in 77% overall yield. Additionally, carboxylation of [2.2]paracyclophane using the Freidel-Crafts acylation was attempted and so far, we have been able to show the synthesis of intermediate acylated products. The successful syntheses of products were verified by FT-IR, NMR and MS, and comparison of their solubility and physical properties showed significant changes upon substitution of the pristine [2.2]paracyclophane. Then, through the chemical vapour deposition polymerization of 4-amino[2.2]paracyclophane amine-functionalized thin films were coated on Si wafer substrates and their properties were compared with Parylene N and C, two well-known poly(para-xylylene) films. The substrates coated with amino-poly(para-xylylene) showed a higher surface energy compared with those of coated with un-substituted or chlorine substituted poly(para-xylylene) films. Furthermore, results of the surface characterization conducted by grazing angle reflectance IR spectroscopy and XPS, demonstrated that the CVD process was able to transfer the functionalities of the precursors to deposited polymer films without alteration. However, with the applied process parameters we obtained a higher functional density of amine groups on the surface. These polymer films can be deposited on a variety of substrates and be used as functional surfaces for a variety of applications. However, the stability of primary amine groups in air and aqueous solutions is a matter of concern. Aging of 4-amino-[2.2]paracyclophane and corresponding poly(para-xylylene) films in air and mili-Q water was studied via XPS and NMR spectroscopies. The results showed a decrease in the amount of primary amines with storage time in air or water for both aminated precursor and polymer. The kinetics for these changes, however, were not equal for the precursors and polymer films. The decay of amine groups was accompanied by the appearance and increase of oxygen, indicating that the decrease of available amine groups is associated with oxidation which can transform them to more stable amide and nitro compounds. In total, practical challenges involved in manufacture, durability and applications of amine-functionalized Parylene coatings are discussed and a reliable scheme for fabricating such films with high tunabiliy of the surface functional density is demonstrated. The highly practical method presented here provides great potential for widespread application of amine-functionalized poly(para-xylylene) as an outstanding biomaterial for microarrays, tissue engineering and cell culture studies. / Thesis / Master of Science (MSc)
7

Development of Zeolitic Imidazolate Frameworks for Enhancing Post-combustion Co2 Capture

Lee, Dustin 01 September 2020 (has links) (PDF)
Post-combustion CO2 capture is a promising approach for complementing other strategies to mitigate climate change. Liquid absorption is currently used to capture CO2 from post-combustion flue gases. However, the high energy cost required to regenerate the liquid absorbents is a major drawback for this process. As a result, solid sorbents have been investigated extensively in recent years as alternative media to capture CO2 from flue gases. For example, metal organic frameworks (MOFs) are nanoporous materials that have high surface areas, large pore volumes, and flexible designs. A large number of MOFs, however, suffer from 1) low CO2 adsorption capacity at low pressure, which is the typical condition for flue gases, 2) degradation upon exposure to water present in flue gases, and 3) low selectivity of CO2 when present in a mixture of gases. Zeolitic Imidazolate Frameworks (ZIFs) are heavily investigated MOFs for CO2 sorption applications because they have better selectivity for CO2 compared to other MOFs and are resistant to degradation in water due to their hydrophobic nature. However, ZIFs (e.g., ZIF-8) investigated for CO2 sorption applications are typically produced using toxic solvents and their CO2 sorption capacity is drastically lower than other types of MOFs. Post-synthesis modifications with amine functional groups have been known to increase CO2 sorption capacity and selectivity within nanoporous materials. For ZIFs, previous research showed that sufficient loading with linear polyethyleneimine increased their CO2 sorption capacity. Therefore, the objectives of this research were to a) investigate the CO2 sorption capacity of ZIF-8 synthesized by solvothermal methods that use more eco-friendly solvents (e.g., methanol and water) and b) introduce post-synthetic modifications to ZIF-8 using branched polyethyleneimine (bPEI) to enhance its sorption capacity. A custom quartz crystal microbalance (QCM) system was assembled and used to measure the CO2 sorption capacity of unmodified and bPEI-modified ZIF-8 sorbent. The tests were conducted at 0.3 - 1 bar. The results showed that the unmodified ZIF-8 synthesized in methanol (ZIF-8-MeOH) had comparable crystal structure, thermal stability, surface area, and chemical properties to that of literature (Ta et.al 2018). ZIF-8-MeOH had a surface area of 1300 m2/g and a CO2 sorption capacity of 0.85 mmol CO2/g ZIF-8 @ 1 bar. This surface area and sorption capacity are comparable to those of ZIF-8 made in dimethylformamide (DMF). Therefore, ZIF-8-MeOH proved to be a worthy candidate MOF for replacing the ZIF-8 made in DMF for CO2 capture research. Water-based ZIF-8 was also synthesized in this study; however, its CO2 sorption capacity was not tested because it exhibited a significantly lower surface area (732 m2/g) compared to that of ZIF-8-MeOH. Modification of the ZIF-8-MeOH with bPEI resulted in a decrease in its CO2 sorption capacity. This undesired outcome is likely a result of insufficient bPEI load (mass attached), on ZIF-8-MeOH (~ 10% w/w) combined with the surface area lost (~ 770 m2/g) due to bPEI blocking some of the ZIF-8-MeOH pores. Therefore, the bPEI load attained in this study was not enough to compensate for the loss of surface area of the modified ZIF-8 and thus, the CO2 sorption capacity decreased. Future investigations should enhance the post-synthetic modification by increasing the loading of amine functional groups onto the eco-friendlier ZIF-8-MeOH used in this study.

Page generated in 0.1655 seconds