Spelling suggestions: "subject:"amino acid derivatives""
1 |
Electrochemical detection of chemical warfare agent simulantsMarenco, Armando J 04 December 2009
This work attempted to detect chemical warfare agent (CWA) simulants via electrochemistry utilizing two approaches. The first approach consisted of a ferrocene (Fc) amino acid derivative film on Au surfaces. The molecule [(BocHN)Fc(CO)CSA]2 was electrodeposited onto Au microelectrodes through a SAu bond. Once immobilized, the Fc amino acid derivative was Boc deprotected allowing for the amino group to react with the target molecule. Detection of the target simulant was monitored by cyclic voltammetry (CV) while following the formal potential of the Fc molecule, which is influenced by its immediate electronic microenvironment. Reaction with either 1 mM diethyl cyanophosphonate (DECP) or 2 chloroethyl ethyl sulfide (2 CEES), both effectively simulants for the CWAs Tabun nerve agent and blistering sulfur mustard respectively, was not observed. However, detection of 1 mM acetyl chloride was achieved by observing a potential anodic shift from 217 ± 6 mV, for the Boc deprotected form, to 388 ± 7 mV for the reacted state of the molecule. The lack of reactivity with the Fc amino acid system was hypothesized as a kinetic issue.<p>
In the second approach, the electrochemistry of gas generated naked Ag nanoparticles (NPs) deposited on indium tin oxide covered glass plates is compared to bulk polycrystalline Ag. The nano specific electrochemistry of Ag NPs has been identified and includes the preferential formation of â oxides. In 100 mM KOH supporting electrolyte, disruption of â oxide formation is exploited to test for the presence of 1 mM DECP resulting in the dissolution of Ag via cyanide complexes leading to a CV signal decrease. While in 8.0 M KOH, â oxide formation is enhanced leading to testing capabilities for 1 mM 2 CEES resulting in the disappearance of the â oxide peak and the appearance of surface oxide peak during CV. Analogous electrochemistry is not observed on polycrystalline bulk Ag.
|
2 |
Electrochemical detection of chemical warfare agent simulantsMarenco, Armando J 04 December 2009 (has links)
This work attempted to detect chemical warfare agent (CWA) simulants via electrochemistry utilizing two approaches. The first approach consisted of a ferrocene (Fc) amino acid derivative film on Au surfaces. The molecule [(BocHN)Fc(CO)CSA]2 was electrodeposited onto Au microelectrodes through a SAu bond. Once immobilized, the Fc amino acid derivative was Boc deprotected allowing for the amino group to react with the target molecule. Detection of the target simulant was monitored by cyclic voltammetry (CV) while following the formal potential of the Fc molecule, which is influenced by its immediate electronic microenvironment. Reaction with either 1 mM diethyl cyanophosphonate (DECP) or 2 chloroethyl ethyl sulfide (2 CEES), both effectively simulants for the CWAs Tabun nerve agent and blistering sulfur mustard respectively, was not observed. However, detection of 1 mM acetyl chloride was achieved by observing a potential anodic shift from 217 ± 6 mV, for the Boc deprotected form, to 388 ± 7 mV for the reacted state of the molecule. The lack of reactivity with the Fc amino acid system was hypothesized as a kinetic issue.<p>
In the second approach, the electrochemistry of gas generated naked Ag nanoparticles (NPs) deposited on indium tin oxide covered glass plates is compared to bulk polycrystalline Ag. The nano specific electrochemistry of Ag NPs has been identified and includes the preferential formation of â oxides. In 100 mM KOH supporting electrolyte, disruption of â oxide formation is exploited to test for the presence of 1 mM DECP resulting in the dissolution of Ag via cyanide complexes leading to a CV signal decrease. While in 8.0 M KOH, â oxide formation is enhanced leading to testing capabilities for 1 mM 2 CEES resulting in the disappearance of the â oxide peak and the appearance of surface oxide peak during CV. Analogous electrochemistry is not observed on polycrystalline bulk Ag.
|
3 |
Simple Models for Chirality Conversion of Crystals and Molecules by GrindingUwaha, Makio 25 July 2008 (has links)
No description available.
|
4 |
Antiadhesive agents targeting uropathogenic Escherichia coli : Multivariate studies of protein-protein and protein-carbohydrate interactions / Antiadhesiva substanser riktade mot uropatogena Escherichia coli : Multivariata studier av protein-protein och protein-kolhydrat interaktionerLarsson, Andreas January 2004 (has links)
This thesis describes studies directed towards development of novel antiadhesive agents, with particular emphasis on compounds that prevent attachment of bacteria to a host-cell. Three different proteins involved in the assembly or function of adhesive pili in uropathogenic Escherichia coli have been targeted either by rational structure based design or statistical molecular methods. A library of substituted galabiose (Galα1-4Gal) derivatives was screened for binding to the E. coli adhesin PapG in an assay based on surface plasmon resonance, and for inhibition of Streptococcus suis adhesins PN and PO in a hemagglutination assay. The results were used to generate QSAR models which had good predictive powers and provided further insight in the structural requirements needed for high affinity binding. 2-pyridones and amino acid derivatives were modelled into the binding site of chaperones involved in pilus assembly in E. coli and a heuristic method, VALIDATE, was used for affinity prediction. The affinity of the compounds for the chaperones PapD and FimC were assessed in assays based on surface plasmon resonance and relaxation-edited NMR spectroscopy. Their ability to disrupt chaperone/subunit complexes was investigated in vitro through a FPLC assay and their capacity to inhibit pilus formation in vivo was determined via hemagglutination and confirmed with atomic force microscopy. Statistical molecular design was used to design a diverse peptide library targeting pili subunits, and an ELISA was developed to investigate the ability of the peptides to inhibit chaperone/subunit complexation. The resulting QSAR model provided extensive information regarding binding of the peptides to the subunits. Because the peptides were suggested to bind in an extended β-strand formation, β-strand mimetics consisting of oligomeric enaminones were designed. Finally, new methods to synthesize enaminone building blocks were developed using microwave assisted chemistry. The projects described have generated compounds that besides their value as leads for developing novel antibacterial agents, also constitute new chemical tools to study the mechanisms underlying bacterial virulence.
|
Page generated in 0.1246 seconds