1 |
Transcriptional and metabolic responses of yeast Saccharomyces cerevisiae to the addition of L-serineLee, Johnny Chien-Yi, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
Sudden changes in nutrient resources are common in the natural environment. Cells are able to adapt and propagate under changing environmental conditions by making adjustments in their cellular processes. These cellular adaptations involve genome-wide transcriptional reprogramming that results in the induction or repression of metabolic pathways. Specific enzymes are then synthesised and activated to maximise the use of the newly available nutrient sources. L-serine is one of the twenty proteinogenic amino acids, and can be synthesised in yeast by the glycolytic and gluconeogenic pathways when growing on fermentable or non-fermentable carbon sources or taken up from the environment when available. L-serine is metabolically linked to glycine and is a predominant donor of one-carbon units in one-carbon metabolism. L-serine is also a source of pyruvate and ammonia and contributes to other cellular processes including the biosynthesis of cysteine and phospholipids. Previous work has shown that yeast cells exhibit transcriptional induction of the one-carbon pathway and the genes involved in the synthesis of purine and methionine after the addition of 10 mM glycine. Here it is shown that addition of 10 mM L-serine did not, however, elicit the same transcriptional response. This is primarily due to differences in the uptake of glycine and L-serine in yeast. High concentrations of extracellular L-serine were required for yeast to show an increase in intracellular L-serine concentration of the magnitude required to trigger a noticeable cellular response. Despite L-serine and glycine being interconvertable via the SHMT isozymes and being a one-carbon donor, the genome-wide transcriptional response exhibited by cells in response to L-serine addition was markedly different to that seen for glycine. The predominant response to an increase in intracellular L-serine was the induction of the general amino acid control system and the CHA1 gene encoding the serine (threonine) dehydratase. Unlike glycine, addition of L-serine triggered only minor induction of the one-carbon pathway. A large portion of intracellular L-serine was converted to pyruvate and ammonia in the mitochondrion as the result of induction of CHA1. The high intracellular concentration of L-serine stimulated the cell to increase the production of oxaloacetate and to increase the biosynthesis of L-aspartate. Transient increases in the intracellular L-glutamate and L-glutamine were also observed after the addition of L-serine. The work presented in this study shows that large increase in the intracellular concentration of amino acid is required to trigger a significant transcriptional response. Yeast cells exhibit different transcriptional and metabolic responses to the addition of L-serine and glycine even though these two amino acids are closely metabolically linked. Addition of L-serine provokes the GAAC response, expression of the CHA1 gene and stimulates the biosynthesis of L-aspartate in yeast whereas addition of glycine induces the one-carbon pathway which leads to the biosynthesis of the purine nucleotides.
|
2 |
Transcriptional and metabolic responses of yeast Saccharomyces cerevisiae to the addition of L-serineLee, Johnny Chien-Yi, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
Sudden changes in nutrient resources are common in the natural environment. Cells are able to adapt and propagate under changing environmental conditions by making adjustments in their cellular processes. These cellular adaptations involve genome-wide transcriptional reprogramming that results in the induction or repression of metabolic pathways. Specific enzymes are then synthesised and activated to maximise the use of the newly available nutrient sources. L-serine is one of the twenty proteinogenic amino acids, and can be synthesised in yeast by the glycolytic and gluconeogenic pathways when growing on fermentable or non-fermentable carbon sources or taken up from the environment when available. L-serine is metabolically linked to glycine and is a predominant donor of one-carbon units in one-carbon metabolism. L-serine is also a source of pyruvate and ammonia and contributes to other cellular processes including the biosynthesis of cysteine and phospholipids. Previous work has shown that yeast cells exhibit transcriptional induction of the one-carbon pathway and the genes involved in the synthesis of purine and methionine after the addition of 10 mM glycine. Here it is shown that addition of 10 mM L-serine did not, however, elicit the same transcriptional response. This is primarily due to differences in the uptake of glycine and L-serine in yeast. High concentrations of extracellular L-serine were required for yeast to show an increase in intracellular L-serine concentration of the magnitude required to trigger a noticeable cellular response. Despite L-serine and glycine being interconvertable via the SHMT isozymes and being a one-carbon donor, the genome-wide transcriptional response exhibited by cells in response to L-serine addition was markedly different to that seen for glycine. The predominant response to an increase in intracellular L-serine was the induction of the general amino acid control system and the CHA1 gene encoding the serine (threonine) dehydratase. Unlike glycine, addition of L-serine triggered only minor induction of the one-carbon pathway. A large portion of intracellular L-serine was converted to pyruvate and ammonia in the mitochondrion as the result of induction of CHA1. The high intracellular concentration of L-serine stimulated the cell to increase the production of oxaloacetate and to increase the biosynthesis of L-aspartate. Transient increases in the intracellular L-glutamate and L-glutamine were also observed after the addition of L-serine. The work presented in this study shows that large increase in the intracellular concentration of amino acid is required to trigger a significant transcriptional response. Yeast cells exhibit different transcriptional and metabolic responses to the addition of L-serine and glycine even though these two amino acids are closely metabolically linked. Addition of L-serine provokes the GAAC response, expression of the CHA1 gene and stimulates the biosynthesis of L-aspartate in yeast whereas addition of glycine induces the one-carbon pathway which leads to the biosynthesis of the purine nucleotides.
|
3 |
Protein NMR Studies of E. Coli IlvN and the Protease-VPg Polyprotein from Sesbania Mosaic VirusKaranth, N Megha January 2013 (has links) (PDF)
Acetohydroxyacid synthase is a multisubunit enzyme that catalyses the first committed step in the biosynthesis of the branched chain amino acids viz., valine, leucine and isoleucine. In order to understand the structural basis for the observed allosteric feedback inhibition in AHAS, the regulatory subunit of AHAS isozymes I from E. coli was cloned, expressed, purified and the conditions were optimized for solution NMR spectroscopy. IlvN was found to exist as a dimer both in the presence and absence of the feedback inhibitor. Using high-resolution multidimensional, multinuclear NMR experiments, the structure of the dimeric valine-bound 22 kDa IlvN was determined. The ensemble of twenty low energy structures shows a backbone root mean square deviation of 0.73 ± 0.13 Å and a root mean square deviation of 1.16 ± 0.13 Å for all heavy atoms. Furthermore, greater than 98% of the backbone φ, ψ dihedral angles occupy the allowed and additionally allowed regions of the Ramachandran map. Each protomer exhibits a βαββαβα topology that is a characteristic feature of the ACT domain fold that is observed in regulatory domains of metabolic enzymes. In the free form, IlvN exists as a mixture of conformational states that are in intermediate exchange on the NMR timescale. Important structural properties of the unliganded state were probed by H-D exchange studies by NMR, alkylation studies by mass spectrometry and other biophysical methods. It was observed that the dynamic unliganded IlvN underwent a coil-to-helix transition upon binding the effector molecule and this inherent conformational flexibility was important for activation and valine-binding. A mechanism for allosteric regulation in the AHAS holoenzyme was proposed. Study of the structural and conformational properties of IlvN enabled a better understanding of the mechanism of regulation of branched chain amino acid biosynthesis.
Solution structural studies of 32 kDa Protease-VPg (PVPg) from Sesbania mosaic virus (SeMV)
Polyprotein processing is a commonly found mechanism in animal and plant viruses, by which more than one functional protein is produced from the same polypeptide chain. In Sesbania Mosaic Virus (SeMV), two polyproteins are expressed that are catalytically cleaved by a serine protease. The VPg protein that is expressed as a part of the polyprotein is an intrinsically disordered protein (by recombinant expression) that binds to various partners to perform several vital functions. The viral protease (Pro), though possessing the necessary catalytic residues and the substrate binding pocket is unable to catalyse the cleavage reactions without the VPg domain fused at the C-terminus. In order to determine the structural basis for the aforementioned activation of protease by VPg I undertook the structural studies of the 32 kDa PVPg domains of SeMV by solution NMR spectroscopy. NMR studies on this protein were a challenge due to the large size and spectral overlap. Using a combination of methods such as deuteration, TROSY-enhanced NMR experiments and selective ‘reverse-labelling’, the sequence specific assignments were completed for ~80% of the backbone and 13C nuclei. NMR studies on mutants such as the C-terminal deletion mutant, I/L/V to A mutants in VPg domain were conducted in order to identify the residues important for aliphatic-aromatic interactions observed in PVPg. Attempts were made to obtain NOE restraints between Pro and VPg domains through ILV labelled samples; however these proved unsuccessful. It was observed that ‘natively unfolded’ VPg possessed both secondary and tertiary structure in PVPg. However, 30 residues at the C-terminus were found to be flexible. Even though atomic-resolution structure could not be determined, the region of interaction between the domains was determined by comparing NMR spectra of Pro and PVPg. The conditions for reconstitution of the Protease-VPg complex by recombinantly expressed Pro and VPg proteins were standardised. These studies lay the foundation for future structural investigations into the Protease-VPg complex.
|
Page generated in 0.0574 seconds