• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anticancer Activity of Melflufen : Preclinical Studies of a Novel Peptidase-Potentiated Alkylator

Strese, Sara January 2015 (has links)
Melflufen (melphalan flufenamide, chemical name L-melphalanyl-p-L-fluorophenylalanine ethyl ester hydrochloride, previously called J1) is a derivative of the classical alkylating agent melphalan. Melflufen is potentiated by hydrolytic cleavage by aminopeptidase N (APN), leading to high intracellular concentrations of alkylating moieties and subsequent cell death. Increased APN expression is associated with the malignant phenotype of several human cancers, including acute myeloid leukemia, lymphoma and ovarian cancer, and plays a functional role in tumor angiogenesis. Therefore investigations of melflufen activity in these malignancies as well as detailed studies of inhibition of angiogenesis are interesting. The aim of this project was to investigate the cytotoxic and antiangiogenic effect, in vitro and in vivo, of melflufen, compared to melphalan and other cytotoxic drugs used in the clinic. We showed that melflufen was more effective than its parental drug melphalan in lymphoma, AML and ovarian cancer in cell lines as well as in primary patient samples. An improved in vitro therapeutic index was demonstrated by an increased cytotoxic activity in the patient samples compared to normal peripheral blood mononuclear cells (PBMCs). Furthermore, melflufen in combination with cytarabine was synergistic in an AML cell line in a sequence-dependent manor. Melflufen was shown effective in several animal models using lymphoma, AML and ovarian cell xenografts (single drug or in combination), including an intraperitoneal ovarian xenograft. Finally, we demonstrated that melflufen had antiangiogenic properties in several different models.

Page generated in 0.0959 seconds