• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The diphenylpyrazole compound anle138b blocks Aβ channels and rescues disease phenotypes in a mouse model for amyloid pathology

Martinez Hernandez, Ana, Urbanke, Hendrik, Gillman, Alan L, Lee, Joon, Ryazanov, Sergey, Agbemenyah, Hope Y, Benito, Eva, Jain, Gaurav, Kaurani, Lalit, Grigorian, Gayane, Leonov, Andrei, Rezaei‐Ghaleh, Nasrollah, Wilken, Petra, Arce, Fernando Teran, Wagner, Jens, Fuhrman, Martin, Caruana, Mario, Camilleri, Angelique, Vassallo, Neville, Zweckstetter, Markus, Benz, Roland, Giese, Armin, Schneider, Anja, Korte, Martin, Lal, Ratnesh, Griesinger, Christian, Eichele, Gregor, Fischer, Andre 01 1900 (has links)
Alzheimer's disease is a devastating neurodegenerative disease eventually leading to dementia. An effective treatment does not yet exist. Here we show that oral application of the compound anle138b restores hippocampal synaptic and transcriptional plasticity as well as spatial memory in a mouse model for Alzheimer's disease, when given orally before or after the onset of pathology. At the mechanistic level, we provide evidence that anle138b blocks the activity of conducting Ab pores without changing the membrane embedded A beta-oligomer structure. In conclusion, our data suggest that anle138b is a novel and promising compound to treat AD-related pathology that should be investigated further.
2

Impact of PLCG2 Alzheimer's Disease Risk and Protective Variants on Microglial Biology and Disease Pathogenesis

Tsai, Andy Po-Yi 09 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer’s disease (AD) is typified by a robust microglial-mediated immune response. Genetic studies have demonstrated that many genes that alter AD risk are involved in the innate immune response and are primarily expressed in microglia. Among these genes is phospholipase C gamma 2 (PLCG2), a critical element for various immune receptors and a key regulatory hub for immune signaling. PLCG2 genetic variants are associated with altered AD risk. The primary objective of this thesis was to determine the role of PLCG2 in AD pathogenesis. We observed significant upregulation of PLCG2 expression in three brain regions of late-onset AD (LOAD) patients and a significant positive correlation of PLCG2 expression with amyloid plaque density. Furthermore, the differential gene expression analysis highlighted inflammatory response-related pathways. These results suggest that PLCG2 plays an important role in AD. We systematically investigated the impact of PLCG2 haploinsufficiency on the microglial response and amyloid pathology in the amyloidogenic 5xFAD mouse model. The results demonstrated that Plcg2 haploinsufficiency altered the phenotype of plaqueassociated microglia, suppressed cytokine levels, increased compact X34-positive plaque deposition, and downregulated the expression of microglial genes associated with immune cell activation and phagocytosis. Our study highlights the role of PLCG2 in immune responses; loss of function of PLCG2 exacerbates the amyloid pathology of AD. Genetic studies demonstrated that the hypermorphic P522R variant is protective and that the loss of function M28L variant confers an elevated risk for AD. Our results demonstrated that PLCG2 variants modulate disease pathologies through specific transcriptional programs. In the presence of amyloid pathology, the M28L risk variant impaired microglial response to plaques, suppressed cytokine release, downregulated disease-associated microglial genes, and increased plaque deposition. However, microglia harboring the P522R variant exhibit a transcriptional response endowing them with a protective immune response signature linked to their association with plaques and Aβ clearance, attenuating disease pathogenesis in an amyloidogenic mouse model of AD. Collectively, our study provides evidence that the M28L variant is associated with accelerated and exacerbated disease-related pathology, and conversely, the P522R variant appeared to attenuate disease severity and progression. / 2024-10-03

Page generated in 0.0846 seconds