• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 14
  • 12
  • 10
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 284
  • 284
  • 191
  • 146
  • 133
  • 62
  • 41
  • 40
  • 38
  • 28
  • 28
  • 22
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Surface Chemistry and Spectroscopic Approach to Study Neurodegenerative Diseases

Thakur, Garima 15 December 2010 (has links)
Accumulation or aggregation of amyloidogenic proteins in the brain plays a central role in neurodegenerative diseases. The most common and highly growing form of dementia in the elderly population is Alzheimer's disease (AD) followed by Parkinson's disease (PD). The major proteins associated are amyloid beta (Abeta) and alpha-synuclein (alpha-syn) in AD and PD, respectively. These proteins are released or found near the neuronal membranes in the brain. Consequently to understand the behavior of the proteins using a model membrane system becomes an important facet of understanding these diseases. Langmuir monolayer approach was used to study the surface chemistry and spectroscopy of Abeta (1-40), Abeta(1-42) and alpha-synuclein. Moreover, surface chemistry of a model protein namely, lysozyme was investigated. In recent times, quantum dots (QDs) are considered as potential probes for bio-imaging. These particles can be beneficial when it comes to the investigation of neurodegenerative diseases. The effect of nanoparticles, i.e., CdSe/ZnS QDs on Abeta (1-42) morphology was investigated. Nevertheless, it was observed that the capping ligand plays a significant role in the surface chemistry of QDs when mixed with or conjugated to Abeta (1-42). Surface pressure- and surface potential-area isotherms were used to characterize the lysozyme Langmuir monolayer. The compression-decompression cycles and stability measurements showed a homogeneous and stable monolayer at the air-water interface. Salt concentration in the subphase and pH of the subphase were parameters controlling homogeneity and stability of the Langmuir monolayer. In situ UV-vis and fluorescence spectroscopies were used to verify the homogeneity of the lysozyme monolayer, and to identify the chromophore residues in the lysozyme. Optimal experimental conditions were determined to prepare a homogeneous and stable lysozyme Langmuir monolayer. The surface chemistry and spectroscopy of the reduced lysozyme Langmuir monolayer were investigated at different pH values and were compared to a native lysozyme. It was established that the limiting molecular area of the reduced lysozyme was not subphase pH dependent as was found for the native one. To explain this result in terms of the conformation and orientation of the lysozyme Langmuir monolayer at various subphase pH values, we have used Infrared Reflection Absorption Spectroscopy (IRRAS). The interpretation of the results suggests a change in the conformation and orientation of the native lysozyme Langmuir monolayer with the subphase pH 3, 6 and 11. The surface chemistry of Abeta (1-40) and its interaction with the lipid raft Langmuir monolayer were examined where the stability of the lipid raft Langmuir monolayer came out as an essential parameter. Lipid raft Langmuir monolayer in the presence or absence of ganglioside GM1 having POPC as one of the phospholipids was found to be very unstable and collapsed within 26 min. Whereas, the phospholipid DPPG improved the stability of the monolayer significantly when cholesterol was used in excess. We have examined the surface and spectroscopic properties of Abeta (1-42) mixed with or conjugated to dihydrolipoic acid (DHLA)- and polyethylene glycol (PEG)- capped CdSe/ZnS QDs. Surface pressure-area isotherms, in situ UV-vis absorption, and fluorescence spectroscopy were used to characterize the Abeta (1-42) mixed with or conjugated to QDs at the air-water interface. The capping of QDs played a role in surface chemistry as was determined by surface pressure-area isotherms and spectroscopic properties of the Langmuir monolayer. Furthermore Abeta(1-42) was bioconjugated to DHLA-capped CdSe/ZnS QDs. Upon conjugation of Abeta (1-42) to DHLA-capped QDs, the sample was incubated at 37oC, the process of fibrillation was inhibited as compared with a sample where Abeta (1-42) was simply mixed with the QDs. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were employed for the analysis of the samples. The morphology of fibrils and reduction in number of fibrils was substantial in the case of Abeta(1-42) conjugated to QDs. Reduction in fibrillation was also confirmed using a Thioflavin T assay. Moreover, quenching of tyrosine signal was observed in presence of the QDs, which indicates an interaction of QDs to the tyrosine residue in Abeta (1-42). The Surface chemistry and spectroscopy of alpha-syn, which is a natively unstructured protein important in the neuropathology of PD was investigated. IRRAS was utilized to investigate its conformation, alpha-syn was found to form a Langmuir monolayer in alpha-helical conformation with its helical axis parallel to the air-water interface.
72

Heparan Sulfate Dependent Mechanisms of Amyloidosis

Noborn, Fredrik January 2012 (has links)
A common theme in amyloid disorders is the deposition of disease-specific protein aggregates in tissues. Amyloid proteins bind to heparan sulfate (HS), a sulfated glycosaminoglycan, and HS has been found to promote the aggregation process. The present work relates to HS mediated mechanisms of amyloidosis, particularly transthyretin (TTR) amyloidosis, AA-amyloidosis and Alzheimer’s disease (AD). TTR is a transport protein present in the blood and cerebrospinal fluid, which under unclear circumstances can deposit as amyloid in the myocardium of elderly individuals. Examination of cardiac tissue from a 70 year old patient with reported cardiomyopathy reveald co-deposition of TTR amyloid and HS. Studies revealed that HS promotes TTR fibrillization through interaction with a basic motif in the protein. Empolyment of a cell model demonstrated that cell surface HS mediates internalization of TTR, an effect likely facilitated by HS-binding to the basic motif on TTR. Collectively, HS-TTR interactions at the cell surface may have dual outcomes, resulting in either fibrillization or internalization, respectively. During inflammatory conditions, serum amyloid A (SAA), an acute-phase protein associated with the high-density lipoprotein (HDL), can assemble into insoluble amyloid fibrils, causing AA-amyloidosis. We found that HS structures exceeding 12-14 sugar units in length separates SAA from HDL and induces subsequent aggregation of the polypeptide. Our result proposes a novel role for HS in AA-amyloidosis in which a critical length of HS is required for separation of SAA from HDL. Late-onset AD patients show reduced ability to clear cerebral amyloid-β (Aβ) aggregates, a pathological hallmark of the disease. Althought the pathway of Aβ clearance is still unclear, several cell-surface receptors are implicated in Aβ internalization. We found that ApoE facilitated Aβ uptake through interactions with HS-proteoglycans and low-density lipoprotein receptor-related protein 1. The ApoE interaction with Aβ likely promotes Aβ clearance in the brain, but, if unbalanced, may contribute to the pathology of AD.     These findings are in accord with the concept of HS as a promoter of amyloid protein aggregation, but also point to more complex relationship.
73

Targeting cytotoxic species in amyloid diseases

Lindhagen Persson, Malin January 2012 (has links)
Amyloid diseases are a world-wide problem causing great human suffer and large economical costs. Although amyloid deposits, a common denominator in all amyloid disorders, are detrimental to the surrounding tissue, there is a poor correlation between total amyloid burden and clinical symptoms. Soluble oligomers are much more potent to exert a tissue damaging effect.  Alzheimer’s disease (AD) is strongly linked to self-assembly of the amyloid-β (Aβ) peptide. Antibodies selectively targeting cytotoxic Aβ-species are useful both for understanding oligomer formation and for their therapeutic abilities. We hypothesized that the effect of avidity would compensate for a low single site affinity and be enough to selectively target oligomers. To evaluate this hypothesis, we focused on the IgM isotype having ten antigen-binding sites. In accordance with the hypothesis, the IgM isotype effectively bound oligomeric Aβ also in presence of a vast excess of its monomeric counterpart, clearly illustrating the potentiating effect of avidity. As a continuation of this work, we have shown that the avidity effect from a bivalent binding is enough to induce oligomer specificity. This finding facilitates a direct application on the clinically more useful IgG isotype, where the binding properties now can be controlled in detail. The method is general and we have, using this technique, also designed oligomer specific antibodies targeting α-synuclein. Transthyretin (TTR) is an amyloidogenic protein involved in both hereditary and sporadic amyloidosis. The cytotoxicity of TTR is intriguing since studies have shown cytotoxic potential from oligomers, tetramers and even monomers. Elucidation of the molecular properties associated with TTR cytotoxicity is hence of interest. By preventing tetramer dissociation, TTR aggregation and TTR-induced cytotoxicity is abolished. Based on this rationale, a current therapeutic strategy is to stabilize the TTR tetramer with small molecules. The kinetic stability within the spectra of known TTR mutations spans more than three orders of magnitude. However, although the most stable mutants are inert, a poor correlation within the group of cytotoxic variants exists where the cytotoxic effect is not potentiated in proportion to their kinetic stability. Through analysis of a large spectra of TTR variants, our results indicate that TTR induced cytotoxicity requires an intermediate stability of the TTR molecule. The kinetic stability should be low enough to permit tetramer dissociation and the thermodynamic stability high enough to prevent instant aggregation and to allow formation of the cytotoxic fold.
74

NMR studies of the amyloid beta-peptide

Danielsson, Jens January 2007 (has links)
The Amyloid beta peptide (Ab) is related to Alzheimer’s disease and is suggested to be the molecular pathogenic species of the disease, probably through the neurotoxic effect of Ab oligomers. Here the results from biophysical studies of Ab and fragments thereof, are presented. Pulsed field gradient NMR diffusion experiments show that Ab exists mainly as an unfolded monomer. In addition, the hydrodynamic radius of Ab suggests that Ab has residual secondary structure propensities. CD experiments reveal that Ab has a high propensity to adopt a polyproline type II (PII) helix at low temperature. NMR diffusion measurements as well as the 3JHNH values show that increasing the temperature from 4 C induces a structure transition from PII propensity to a beta strand propensity around 15 C and to a random coil conformation at higher temperature. The small hydrodynamic radius at low temperature may be explained by the presence of a population of a hairpin conformation as was suggested by MD simulations. 15N relaxation and secondary chemical shifts suggest that Ab consists of 6 structural regions, two regions with high PII propensity are separated by a highly mobile region located in the N-terminal part of the peptide. In the C-terminal part two regions with a propensity to adopt b-strand are located, separated by a mobile region. The structural propensities of soluble monomeric Ab agree well with the structure of the peptide in fibril aggregates as well as in SDS micelles. Ab binds zinc specifically and with high affinity. This interaction was studied using heteronuclear correlation experiments. The metal ligands were determined to be three histidines, 6,13 and 14 and the N-terminus. The Ab peptide also binds b-cyclodextrin and the combined use of NMR diffusion experiments and induced chemical shifts show that Ab has at least two binding sites for b-cyclodextrin, and the dissociation constants of these binding sites were determined.
75

Computational Modeling of the Binding of Amyloid-Beta to Neprilysin for Facilitating the Development of a Potential Alzheimer's Disease Therapy

Pope, Darrick Earle 15 October 2013 (has links)
The zinc metalloprotease neprilysin (NEP) has been shown to degrade small bioactive peptides. Crystal structures of seven NEP-inhibitor complexes and biochemical characterization of NEP activity have highlighted amino acid interactions that are crucial to ligand binding. Studies also indicate that NEP is one of a select group of metalloenzymes that degrade the amyloid-beta peptide (Aß) in vivo and in situ. Accumulation of neurotoxic Aß aggregates in the brain appears to be a causative agent in the pathophysiology of Alzheimer's Disease (AD). For this reason the enzymatic degradation of Aß has been studied extensively, but little is known about specific binding interactions underlying NEP degradation of Aß. Using known crystal structures of NEP, we have conducted comparative computational studies of ligand binding that predict NEP residues Arg 102 and 110 form binding interactions specific to Aß. These interactions may provide insight for using NEP degradation of Aß in AD therapy. / Bayer School of Natural and Environmental Sciences; / Chemistry and Biochemistry; / MS; / Thesis;
76

Differential changes in gene expression in cultured human retinal pigment epithelial cells after beta-amyloid stimulation

Kurji, Khaliq 05 1900 (has links)
Age related macular degeneration (AMD) is the most common cause of irreversible vision loss in the elderly. At present, there are an estimated one million people in Canada with some form of AMD and this number is expected to double to two million by 2031. These estimates are sobering, and it is predicted that costs for treatment and care of individuals who suffer vision loss from AMD will have significant impact on the social and public health systems in Canada in the next two decades. There are treatments to slow the progression of vision loss, but unfortunately, there are currently no cures available for AMD. In order to develop effective second generation therapies and cures, further insights into how and why AMD develops are greatly needed. Recent studies have provided novel insights into the role of inflammation in the pathogenesis of AMD. Inflammation, or swelling of the retinal tissues, causes harmful processes that promote macular degeneration. The proposed studies will focus on the triggers of inflammation in the retina. It is hypothesized that macular degeneration may be slowed or stopped by eliminating the molecules that cause inflammation in the retina. This study will focus on amyloid beta (Aβ), a toxic molecule that has been implicated in retinal inflammation, and the role that it may play in gene expression of the retinal pigment epithelial cell. Amyloid beta is a well studied peptide in another age related disorder, Alzheimer’s disease. It is the major extracellular deposit in Alzheimer’s disease plaques, and has recently been discovered as a component of drusen, the hallmark extracellular deposits in the retina of patients with the ‘dry’ form of AMD. These studies will allow the development of new treatment regimens that target retinal inflammation and thus minimize the processes that ‘trigger’ the onset of macular degeneration.
77

Proteolytic Processing of the Amyloid Precursor Protein During Apoptosis and Cell Cycle: Implications for Alzheimer's Disease

Fiorelli, Tina N. 01 January 2013 (has links)
Alzheimer's disease is characterized by the presence of amyloid plaques, made up primarily of Aϐ peptides, and neurofibrillary tangles, containing hyperphosphorylated tau. Aϐ is generated by sequential proteolysis of the amyloid precursor protein (APP) by beta and gamma secretases. The leading hypothesis of Alzheimer's disease pathogenesis is the amyloid cascade hypothesis, which suggests that amyloid is central to the disease process. However, tau pathology correlates more closely with cognitive dysfunction and follows a predictable anatomical course through the brain. We hypothesize that if Aϐ is upstream of tau pathology and tau pathology follows this predictable course through the brain, Aϐ production may also propagate through the brain in an anatomical fashion. In order to investigate this possibility, we examined two broad cellular processes induced in cells when exposed to Aϐ, p53-dependent apoptosis and cell cycle activation. We report that p53-dependent apoptosis is associated with a decrease in the Aϐ and sAPP-alpha and an increase in an alternative, caspase-cleaved fragment of APP, resulting from an apparent cleavage in the near extracellular domain of APP. Mitosis is associated with the phosphorylation of both tau and APP, and increased production of Aϐ. Our results indicate that while p53-dependent apoptosis is not associated with increased amyloidogenesis, cell cycle activation increases Aϐ production and may play a role in disease propagation. Together, these findings suggest various treatment approaches, including cell cycle inhibition and disruption of APP endocytosis, which may decrease amyloidogenic processing. Continued research into these potential approaches, coupled with earlier detection of the disease process, could lead to promising treatments for Alzheimer's disease.
78

Plasma {221}-amyloid protein and serum {221}-amyloid autoantibody levels in patients with Alzheimer's disease

Zhou, Lin, 周琳 January 2011 (has links)
published_or_final_version / Medicine / Master / Master of Philosophy
79

Investigation of synaptic degeneration as a common culprit underlying the neurodegenerative process induced by corticosterone and beta-amyloid

Wuwongse, Suthicha. January 2012 (has links)
Major depression and Alzheimer’s disease (AD) are highly prevalent psychiatric disorders. Further investigation demonstrated that depression itself is a risk factor for AD, and several associated genetic mutations have been found Moreover, significant proportion of AD patients suffer also suffer from depression. These findings generated interests in finding the neurobiological linkages between depression and AD. The elucidation of pathophysiological mechanisms common in both disorders would be important, as the knowledge could provide additional insights regarding the pathogeneses of the disorders and possible interventions. The present study proposes that synaptic degeneration plays a central role in the pathogenesis of depression and AD. Using in vitro disease models, this study demonstrated abnormalities in pre-synaptic and cytoskeletal proteins, which leads to impaired synaptic function. Further investigation into the upstream events demonstrated the involvement of ubiquitin-mediated protein degradation mechanism and the preferential activation of the autophagic-lysosomal pathway. This study also investigated the neuroprotective properties of the antidepressants imipramine and escitalopram. Antidepressants have originally been thought to exert their therapeutic effects through monoaminergic system modulation. Interestingly, results in this study showed that these two agents were able to ameliorate the observed synaptic protein changes, thereby implicating other possible mechanism of action for antidepressants. In conclusion, this study provides evidence that similar synaptic pathologies exist between depression and AD, which could be responsible for the development of these two disorders. Furthermore, antidepressants may be exerting its effects through alleviating synaptic degeneration. / published_or_final_version / Psychiatry / Doctoral / Doctor of Philosophy
80

Iron mediated amyloid beta toxicity and oxidative stress in a Drosophila melanogaster model of Alzheimer's disease

Liu, Beinan January 2010 (has links)
No description available.

Page generated in 0.043 seconds