21 |
Análise estática não linear plana de pontes estaiadas e determinação das frequências naturais e modos de vibração / Nonlinear static analysis of plane cable-stayed bridges and determination of natural frequencies and vibration modesCarlos Augusto Moreira Filho 27 March 2014 (has links)
As pontes estaiadas são exemplos de estruturas esbeltas e flexíveis onde a capacidade de utilização dos materiais tem grande importância. Neste sentido, para garantir a melhor utilização dos materiais envolvidos (aço e concreto, por exemplo), é preciso determinar as forças de protensão aplicadas aos cabos. A melhor distribuição dos momentos fletores no tabuleiro de ponte é aquela obtida com uma viga contínua. Pontes estaiadas fornecem apoios elásticos ao tabuleiro. O presente trabalho emprega o método da anulação dos deslocamentos, MAD, para obter as forças axiais a que os cabos estarão submetidos de modo a aproximar o comportamento do tabuleiro ao de uma viga contínua. O método MAD. proporciona uma estrutura economicamente mais viável. O código computacional desenvolvido realiza análises estática e modal por meio do método dos elementos finitos, MEF. A análise estática utilizada é a não linear geométrica, considerando as não linearidades do efeito de catenária do cabo, e dos elementos submetidos à compressão. O material é assumido no campo do regime elástico linear. A ponte é modelada por elementos de treliça plana com módulo de elasticidade de Dischinger, para simular os cabos, e elementos de pórtico plano para os elementos do tabuleiro e da torre. O carregamento da estrutura considera a atuação apenas do peso-próprio dos elementos estruturais. O código computacional desenvolvido permite, também, a análise modal da estrutura a fim de determinar suas frequências naturais e modos de vibração. A análise modal pode ser realizada com a matriz de massa concentrada, ou consistente. Em relação à matriz de rigidez, a análise modal da estrutura pode utilizar a matriz de rigidez linear, para uma análise de vibrações livres, ou a matriz de rigidez tangente para as análises de vibração sob tensões iniciais. Exemplos encontrados na literatura são resolvidos com o código computacional desenvolvido para verificação e validação. / The cable-stayed bridges are examples of slender and flexible where the usability of the materials is very important structures. In this sense, to ensure the best use of the materials involved (steel and concrete, for example), one must determine the forces applied to the prestressing cables. A better distribution of the bending moments in the bridge deck is obtained with a continuous beam. Cable-stayed bridges provide elastic support to the deck. This work employs the zero displacement method, ZDM, to determine the axial forces that the cables will be subjected to in order to approximate the behavior of the deck to the one as a continuous beam. The ZDM method provides an economically viable structure. The computational code performs static and modal analysis, which are performed by using the finite element method, FEM. The static analysis is a nonlinear geometric analysis which considers the nonlinearities of the cable sag, and the compression effects on the elements. The material is assumed in the field of linear elastic regime. The bridge is modeled by elements of plane truss with Dischingers elasticity module, to simulate cables and plane frame elements for the deck and the tower elements. The structure is subjected to self-weight of the elements. The computer code developed also performs the modal analysis of the structure to determine their natural frequencies and mode shapes. The modal analysis can be carried out with the concentrated or consistent mass matrix. In relation to the stiffness matrix, modal analysis of the structure may use a linear stiffness matrix for analysis of free vibration analysis or the tangent stiffness matrix for the analysis of vibration under initial stress. Examples in the literature are solved with the computational code developed for verification and validation.
|
22 |
Aplicação de formulação baseada no método dos elementos finitos posicional na análise bidimensional elástica de compósitos particulados / Application of a positional finite element method based formulation on the elastic two-dimensional analysis of particulate compositesCamila Alexandrino Moura 05 May 2015 (has links)
A utilização de materiais compósitos tornou-se uma alternativa importante em muitas aplicações dentro de diversas áreas da engenharia, pois seus constituintes podem agregar propriedades mecânicas, térmicas e acústicas ao compósito, garantindo eficiência e baixo custo. Com isso, faz-se necessário um maior conhecimento do comportamento mecânico desses materiais diante das solicitações, principalmente no que diz respeito aos campos de deslocamento, deformações e tensões. O presente trabalho tem por finalidade a análise, em nível macroscópico, de estruturas bidimensionais elásticas constituídas de materiais compósitos particulados, utilizando formulação desenvolvida no contexto do Grupo de Mecânica Computacional (GMEC), do Departamento de Engenharia de Estruturas (SET), da Escola de Engenharia de São Carlos (EESC), da Universidade de São Paulo (USP), no qual se insere a presente pesquisa. A formulação utilizada baseia-se no Método dos Elementos Finitos Posicional (MEFP) e foi desenvolvida em nível mesoscópico por tratar da interação entre matriz e partículas. Tal formulação possibilita a consideração da interação partícula-matriz sem a necessidade de coincidência entre as malhas da matriz e das partículas e sem o aumento do número de graus de liberdade dos problemas, admitindo-se aderência perfeita entre as fases. A formulação considera material isotrópico e comportamento não-linear geométrico das fases. A aplicação da formulação foi aqui proposta com o intuito de avaliar a influência da geometria, tamanho, fração volumétrica, distribuição e propriedades mecânicas das partículas adotadas, no comportamento global da estrutura em nível macroscópico. Foram desenvolvidos e apresentados exemplos de aplicação, com comparação dos resultados numéricos das análises com resultados de ensaios experimentais encontrados na literatura, bem como com resultados de modelos matemáticos de homogeneização e modelos numéricos propostos por outros autores, que utilizaram o método dos elementos finitos e técnicas de homogeneização assintótica. / The use of composite materials has become an important alternative in many applications in different areas of engineering, because their constituents can add mechanical, thermal and acoustic properties to the composite, ensuring efficiency and low cost. Thus, it is necessary a better understanding of the mechanical behavior of these materials, mainly regarding displacement, stress and strain fields. This study aims to analyze, in macroscopic scale, two-dimensional elastic structures made of particulate composite materials, using formulation developed in the context of the Grupo de Mecânica Computacional (GMEC), of Departamento de Engenharia de Estruturas (SET), of Escola de Engenharia de São Carlos (EESC), of Universidade de São Paulo (USP). The formulation is based on the Positional Finite Element Method and was developed in mesoscopic level, considering the matrix-particles interaction and neglecting the interface, by means of kinematic relations used to ensure adherence of the particles to the matrix without introducing new degrees of freedom in the problem. The formulation considers isotropic material and geometric non-linear behavior of the composite phases. The application of the formulation was proposed in this work in order to evaluate the influence of geometry, size, volume fraction, distribution and mechanical properties of the particles adopted in the global behavior of the structure in macroscopic level. Numerical examples were developed and presented in order to compare the numerical results of the analysis with results obtained in experimental studies found in the literature, as well as results of mathematical models and numerical models using finite element method and the asymptotic homogenization technique.
|
23 |
Análise não linear geométrica de cascas laminadas reforçadas com fibras / Geometrically nonlinear analysis of fiber reinforced laminated shellsSampaio, Maria do Socorro Martins 03 February 2014 (has links)
Em geral, as formulações disponíveis na literatura para a análise de cascas laminadas reforçadas com fibras substituem o meio original heterogêneo por um homogêneo equivalente, que dificulta a identificação das tensões fibra-matriz, ou requerem que a malha de elementos finitos seja disposta de modo que os nós dos elementos finitos de fibra coincidam com os nós dos elementos finitos de casca, que é uma exigência bastante restritiva e que aumenta o número de graus de liberdade do sistema de equações resultante. Neste sentido, o objetivo geral desta tese consiste em desenvolver uma formulação para a inclusão de fibras longas e curtas aleatórias nas diversas lâminas de cascas laminadas anisotrópicas com não linearidade geométrica utilizando o método dos elementos finitos sem aumentar o número de graus de liberdade do sistema de equações resultante e sem a necessidade de coincidência de nós na discretização das fibras e da matriz. Nesta formulação, o elemento finito triangular de casca laminada utilizado para discretizar a matriz possui dez nós e sete graus de liberdade por nó, sendo três translações, três componentes do vetor generalizado e a taxa de variação linear da deformação ao longo da espessura. As fibras curvas, curtas aleatórias ou longas, são introduzidas, em qualquer camada do laminado, por meio de relações cinemáticas que garantem sua aderência à matriz sem a introdução de novos graus de liberdade no sistema de equações resultante. Para discretizá-las são utilizados elementos finitos unidimensionais de ordem qualquer com três graus de liberdade por nó e que consideram consistentemente a não linearidade geométrica. Todas as grandezas envolvidas são escritas em relação à configuração inicial do corpo, caracterizando a descrição Lagrangeana total ou material do movimento. Para modelar o comportamento do material adota-se a Lei Constitutiva de Saint-Venant-Kirchhoff que relaciona de forma linear o tensor de tensões de Piolla-Kirchhoff de segunda espécie e o tensor de deformações de Green-Lagrange. O equilíbrio é encontrado a partir do Princípio da Mínima Energia Potencial Total e o sistema não linear de equações resultante é resolvido utilizando-se o procedimento iterativo de Newton-Raphson. As ações externas podem ser introduzidas ao sistema de forma total ou incremental e a contribuição das fibras para a energia do sistema é adicionada na matriz global do problema. Os exemplos numéricos testados validam e demonstram as potencialidades da formulação proposta. / In general, the Finite Element (FE) formulations available in the literature for the analysis of fibre reinforced laminated shells replace the original heterogeneous medium by an equivalent homogeneous one, which makes difficult the identification of fiber-matrix stress distribution, or require that the finite element mesh is arranged in a way that the fibre finite element nodes coincide with the shell finite element ones, which is a very restrictive requirement and increases the number of degrees of freedom of the resulting system of equations. In this sense, the objective of this thesis is to develop a formulation for the inclusion of long and random short fibres in any layer of FE laminated anisotropic shells developing large displacement and rotations without increasing the number of degrees of freedom and the necessity of matching nodes in the discretization of the fibre and the matrix. In this formulation, the triangular laminated shell finite element used to discretize the matrix has ten nodes and seven degrees of freedom per node, that are, three translations, three components of a generalized vector and the linear rate of strain variation along the thickness. The curved fibres, long or random short, are introduced in any layer of the laminate shell by means of kinematic relation to ensure its adherence to the matrix without introducing new degrees of freedom in the resulting system of equations. To discretize them, any order one-dimensional finite elements with three degrees of freedom per node are used. These fibres elements are consistently considered by Geometric nonlinearity. All involved variables are written with respect to the initial configuration of the body, characterizing the Total Lagrangian description. To model the behavior of the material we use the Saint-VenantKirchhoff Constitutive Law that relates linearly the second Piolla-Kirchhoff stress tensor and Green-Lagrange strain tensor. The equilibrium is achieved from the Principle of Minimum Potential Energy and the non-linear system of equations is solved by the Newton-Raphson iterative procedure. External loads may be introduced to the system by one or various steps and the contribution of fibres to the energy of the system is added to the global matrix of the problem. The numerical examples validate and demonstrate the potential of the proposed formulation.
|
24 |
Análise numérica de barras gerais 3D sob efeitos mecânicos de explosões e ondas de choque / Numerical analysis of general 3D bars under mechanical effects of explosions and shock wavesPardo Suárez, Sergio Andrés 16 December 2016 (has links)
O presente trabalho consiste no uso do Método dos Elementos Finitos (MEF) para a análise de interação fluido-estruturas de barras com foco em problemas transientes envolvendo explosões ou outras ações com propagação de ondas de choque. Para isso é necessário o estudo de três diferentes aspectos: a dinâmica das estruturas computacional, a dinâmica dos fluidos computacional e o problema do acoplamento. No caso da dinâmica das estruturas computacional deve-se identificar em função da cinemática de deformações, quais são os requisitos para que um elemento seja adequado para analisar tais problemas, tendo em vista que a formulação deve admitir grandes deslocamentos. Para evitar problemas relacionados com aproximações de rotações finitas, opta-se por empregar uma formulação descrita em termos de posições e que leva em consideração os efeitos de empenamento da seção transversal. No caso da dinâmica dos fluidos computacional, busca-se uma formulação para escoamentos compressíveis que seja estável e ao mesmo tempo sensível ao movimento da estrutura, sendo empregado um algoritmo de integração temporal explícito baseado em características com as equações governantes descritas na forma Lagrangeana-Euleriana Arbitrária (ALE). No que se refere ao acoplamento, busca-se modularidade e versatilidade, empregando-se um modelo particionado fraco (explícito) de acoplamento e técnicas de transferência das condições de contorno (Dirichlet-Neummann), sendo estudados os efeitos de utilizar transferência bidirecional ou unidirecional dessas condições de contorno. / This work consists in the use of the Finite Element Method (FEM) for numerical analysis of fluid-bar structures, focusing on transient problems involving explosions or other actions with shock waves propagation. For this purpose, one needs to study three different aspects: the computational structural dynamics, the computational fluid dynamics and the coupling problem. Regarding computational structural dynamics, one need firstly to identify the requirements for an element to be adequate to analyze such problems, taking into account the fact that such element should admit large displacements. In order to avoid problems related to finite rotation approximations and to give a realist representation of a 3D bar structure, we chose a formulation defined in terms of positions and that considers the cross-section warping effects. Regarding computational fluid dynamics, we seek for a stable formulation for compressible flows, and at same time, sensitive to the movement of the structure, leading to an explicit time integration algorithm based on characteristics with governing equations described in the Arbitrary Lagrangian-Eulerian (ALE) form. Regarding to coupling, we chose to use a weak (explicit) partitioning coupling model in order to ensure modularity and versatility. The developed coupling scheme is bases on boundary conditions transfer techniques (Dirichlet-Neummann), and we study the effects of using bidirectional or unidirectional boundary conditions transfers.
|
25 |
Análise não linear geométrica de cascas laminadas reforçadas com fibras / Geometrically nonlinear analysis of fiber reinforced laminated shellsMaria do Socorro Martins Sampaio 03 February 2014 (has links)
Em geral, as formulações disponíveis na literatura para a análise de cascas laminadas reforçadas com fibras substituem o meio original heterogêneo por um homogêneo equivalente, que dificulta a identificação das tensões fibra-matriz, ou requerem que a malha de elementos finitos seja disposta de modo que os nós dos elementos finitos de fibra coincidam com os nós dos elementos finitos de casca, que é uma exigência bastante restritiva e que aumenta o número de graus de liberdade do sistema de equações resultante. Neste sentido, o objetivo geral desta tese consiste em desenvolver uma formulação para a inclusão de fibras longas e curtas aleatórias nas diversas lâminas de cascas laminadas anisotrópicas com não linearidade geométrica utilizando o método dos elementos finitos sem aumentar o número de graus de liberdade do sistema de equações resultante e sem a necessidade de coincidência de nós na discretização das fibras e da matriz. Nesta formulação, o elemento finito triangular de casca laminada utilizado para discretizar a matriz possui dez nós e sete graus de liberdade por nó, sendo três translações, três componentes do vetor generalizado e a taxa de variação linear da deformação ao longo da espessura. As fibras curvas, curtas aleatórias ou longas, são introduzidas, em qualquer camada do laminado, por meio de relações cinemáticas que garantem sua aderência à matriz sem a introdução de novos graus de liberdade no sistema de equações resultante. Para discretizá-las são utilizados elementos finitos unidimensionais de ordem qualquer com três graus de liberdade por nó e que consideram consistentemente a não linearidade geométrica. Todas as grandezas envolvidas são escritas em relação à configuração inicial do corpo, caracterizando a descrição Lagrangeana total ou material do movimento. Para modelar o comportamento do material adota-se a Lei Constitutiva de Saint-Venant-Kirchhoff que relaciona de forma linear o tensor de tensões de Piolla-Kirchhoff de segunda espécie e o tensor de deformações de Green-Lagrange. O equilíbrio é encontrado a partir do Princípio da Mínima Energia Potencial Total e o sistema não linear de equações resultante é resolvido utilizando-se o procedimento iterativo de Newton-Raphson. As ações externas podem ser introduzidas ao sistema de forma total ou incremental e a contribuição das fibras para a energia do sistema é adicionada na matriz global do problema. Os exemplos numéricos testados validam e demonstram as potencialidades da formulação proposta. / In general, the Finite Element (FE) formulations available in the literature for the analysis of fibre reinforced laminated shells replace the original heterogeneous medium by an equivalent homogeneous one, which makes difficult the identification of fiber-matrix stress distribution, or require that the finite element mesh is arranged in a way that the fibre finite element nodes coincide with the shell finite element ones, which is a very restrictive requirement and increases the number of degrees of freedom of the resulting system of equations. In this sense, the objective of this thesis is to develop a formulation for the inclusion of long and random short fibres in any layer of FE laminated anisotropic shells developing large displacement and rotations without increasing the number of degrees of freedom and the necessity of matching nodes in the discretization of the fibre and the matrix. In this formulation, the triangular laminated shell finite element used to discretize the matrix has ten nodes and seven degrees of freedom per node, that are, three translations, three components of a generalized vector and the linear rate of strain variation along the thickness. The curved fibres, long or random short, are introduced in any layer of the laminate shell by means of kinematic relation to ensure its adherence to the matrix without introducing new degrees of freedom in the resulting system of equations. To discretize them, any order one-dimensional finite elements with three degrees of freedom per node are used. These fibres elements are consistently considered by Geometric nonlinearity. All involved variables are written with respect to the initial configuration of the body, characterizing the Total Lagrangian description. To model the behavior of the material we use the Saint-VenantKirchhoff Constitutive Law that relates linearly the second Piolla-Kirchhoff stress tensor and Green-Lagrange strain tensor. The equilibrium is achieved from the Principle of Minimum Potential Energy and the non-linear system of equations is solved by the Newton-Raphson iterative procedure. External loads may be introduced to the system by one or various steps and the contribution of fibres to the energy of the system is added to the global matrix of the problem. The numerical examples validate and demonstrate the potential of the proposed formulation.
|
26 |
Análise numérica de barras gerais 3D sob efeitos mecânicos de explosões e ondas de choque / Numerical analysis of general 3D bars under mechanical effects of explosions and shock wavesSergio Andrés Pardo Suárez 16 December 2016 (has links)
O presente trabalho consiste no uso do Método dos Elementos Finitos (MEF) para a análise de interação fluido-estruturas de barras com foco em problemas transientes envolvendo explosões ou outras ações com propagação de ondas de choque. Para isso é necessário o estudo de três diferentes aspectos: a dinâmica das estruturas computacional, a dinâmica dos fluidos computacional e o problema do acoplamento. No caso da dinâmica das estruturas computacional deve-se identificar em função da cinemática de deformações, quais são os requisitos para que um elemento seja adequado para analisar tais problemas, tendo em vista que a formulação deve admitir grandes deslocamentos. Para evitar problemas relacionados com aproximações de rotações finitas, opta-se por empregar uma formulação descrita em termos de posições e que leva em consideração os efeitos de empenamento da seção transversal. No caso da dinâmica dos fluidos computacional, busca-se uma formulação para escoamentos compressíveis que seja estável e ao mesmo tempo sensível ao movimento da estrutura, sendo empregado um algoritmo de integração temporal explícito baseado em características com as equações governantes descritas na forma Lagrangeana-Euleriana Arbitrária (ALE). No que se refere ao acoplamento, busca-se modularidade e versatilidade, empregando-se um modelo particionado fraco (explícito) de acoplamento e técnicas de transferência das condições de contorno (Dirichlet-Neummann), sendo estudados os efeitos de utilizar transferência bidirecional ou unidirecional dessas condições de contorno. / This work consists in the use of the Finite Element Method (FEM) for numerical analysis of fluid-bar structures, focusing on transient problems involving explosions or other actions with shock waves propagation. For this purpose, one needs to study three different aspects: the computational structural dynamics, the computational fluid dynamics and the coupling problem. Regarding computational structural dynamics, one need firstly to identify the requirements for an element to be adequate to analyze such problems, taking into account the fact that such element should admit large displacements. In order to avoid problems related to finite rotation approximations and to give a realist representation of a 3D bar structure, we chose a formulation defined in terms of positions and that considers the cross-section warping effects. Regarding computational fluid dynamics, we seek for a stable formulation for compressible flows, and at same time, sensitive to the movement of the structure, leading to an explicit time integration algorithm based on characteristics with governing equations described in the Arbitrary Lagrangian-Eulerian (ALE) form. Regarding to coupling, we chose to use a weak (explicit) partitioning coupling model in order to ensure modularity and versatility. The developed coupling scheme is bases on boundary conditions transfer techniques (Dirichlet-Neummann), and we study the effects of using bidirectional or unidirectional boundary conditions transfers.
|
Page generated in 0.3347 seconds