• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Factors affecting mercury concentrations in anadromous and non-anadromous Arctic charr (Salvelinus alpinus) from eastern Canada

van der Velden, Shannon January 2012 (has links)
Mercury concentrations in freshwater and marine biota are an ongoing concern, even in areas remote from local point sources, such as in the Canadian Arctic and sub-Arctic. Anadromous Arctic charr, which feed in the marine environment, have lower mercury concentrations than non-anadromous Arctic charr, which feed strictly in freshwater, but the two life-history forms have rarely been studied together, and the mechanisms driving the difference are unclear. Here, data from nine pairs of closely-located anadromous and non-anadromous Arctic charr populations were used to explore the impact of biological and life-history factors on individual total mercury concentration ([THg]) across a range of latitudes (49 – 81° N) in eastern Canada. From six of these sampling locations, additional samples of lower trophic level biota (i.e., algae, invertebrates, and forage fishes) were obtained in order to investigate patterns of total mercury (THg) and methylmercury (MeHg) biomagnification in the marine and lacustrine foodwebs supporting Arctic charr. Arctic charr mean [THg] ranged from 20 to 114 ng/g wet weight (ww) in anadromous populations, and was significantly higher in non-anadromous populations (all p < 0.01), ranging from 111 to 227 ng/g ww. Within-population variations in Arctic charr [THg] were best explained by fish age, and were also positively related to fork-length and δ15N-inferred trophic level. Across all sampling sites, the relationship between Arctic charr [THg] and fish age was significant and statistically similar in both life-history types, but only the non-anadromous fish demonstrated a significant relationship with trophic level. Fork-length and site latitude did not explain significant additional variation in Arctic charr [THg] across sampling locations. Trophic magnification factors were 1.98 – 5.19 for THg and 3.02 – 6.69 for MeHg in lacustrine foodwebs, and 1.59 – 2.82 for THg and 2.72 – 5.70 for MeHg in marine foodwebs, and did not differ significantly between the two feeding habitats for either THg or MeHg. The biomagnification rate of MeHg exceeded that of THg in both habitats. Mercury concentrations at the base of the foodweb were higher in the lacustrine environment (estimated at 17 – 139 ng/g dw for THg and 5 – 42 ng/g dw for MeHg) than in the marine environment (8 – 39 ng/g dw for THg and 1 – 11 ng/g dw for MeHg). The proportion of mercury in the methylated form was related to trophic level, and the relationship was statistically similar in the lacustrine and marine habitats. There was no effect of site latitude on mercury concentrations in marine or lacustrine biota, thus the difference between feeding habitats was consistent across a range of latitudes (56 – 72°N) in eastern Canada. We conclude that a difference in prey mercury concentration, driven by differential mercury concentrations at of the base of the lacustrine and marine foodwebs, is important for explaining the difference in mercury concentration between anadromous and non-anadromous in Arctic charr.
2

Movement Patterns of Brook Trout in a Restored Coastal Stream System in Southern Massachusetts

Snook, Erin L 01 January 2014 (has links) (PDF)
Populations of anadromous brook trout can be found from northern Canada into New England. It is believed that the extent of anadromy exhibited by coastal brook trout populations decreases with latitude, but the ecology and movements of the more southern populations are less studied. A 33-month acoustic telemetry study of anadromous brook trout (Salvelinus fontinalis) was conducted in a restored coastal stream and adjacent marine system in southeastern Massachusetts. Movement and migration patterns of 54 brook trout were investigated for individual differences and common features. Individuals exhibited a range of movement patterns. Some were more resident and only moved short distances, while others moved great distances covering the entire stretch of the stream (7.25 km) and moving into the marine environment. General Additive Mixed Models revealed that date was the major influence on brook trout movement between habitats and predicted peaks in movement in the spring and fall. Downstream movement peaked in the spring and in the fall, suggesting post-spawning feeding migration. Fish transitioned between habitats more often at new and full moons and when stream temperature was between 8 and 12 °C. Upstream transitions peaked as temperatures declined in winter 2011. Fifty percent of tagged brook trout were detected in the estuary during the study, suggesting that it is an important habitat for the population. In summer 2012, 14 tagged brook trout (20% of active tags) resided near one receiver at the head of the tide, which contained a thermal refugium in the form of a cold-water spring seep. Of the 84 tagged brook trout, 9.5% moved to the marine environment. Warm temperatures in saline Buttermilk Bay in the summer and cold temperatures in winter probably discourage some individuals from entering the marine environment. Compared to more northern coastal populations of brook trout, the Red Brook population appears to be less anadromous.

Page generated in 0.0482 seconds