Spelling suggestions: "subject:"analytical interpolation""
1 |
Modeling and Model Reduction by Analytic Interpolation and OptimizationFanizza, Giovanna January 2008 (has links)
This thesis consists of six papers. The main topic of all these papers is modeling a class of linear time-invariant systems. The system class is parameterized in the context of interpolation theory with a degree constraint. In the papers included in the thesis, this parameterization is the key tool for the design of dynamical system models in fields such as spectral estimation and model reduction. A problem in spectral estimation amounts to estimating a spectral density function that captures characteristics of the stochastic process, such as covariance, cepstrum, Markov parameters and the frequency response of the process. A model reduction problem consists in finding a small order system which replaces the original one so that the behavior of both systems is similar in an appropriately defined sense. In Paper A a new spectral estimation technique based on the rational covariance extension theory is proposed. The novelty of this approach is in the design of a spectral density that optimally matches covariances and approximates the frequency response of a given process simultaneously.In Paper B a model reduction problem is considered. In the literature there are several methods to perform model reduction. Our attention is focused on methods which preserve, in the model reduction phase, the stability and the positive real properties of the original system. A reduced-order model is computed employing the analytic interpolation theory with a degree constraint. We observe that in this theory there is a freedom in the placement of the spectral zeros and interpolation points. This freedom can be utilized for the computation of a rational positive real function of low degree which approximates the best a given system. A problem left open in Paper B is how to select spectral zeros and interpolation points in a systematic way in order to obtain the best approximation of a given system. This problem is the main topic in Paper C. Here, the problem is investigated in the analytic interpolation context and spectral zeros and interpolation points are obtained as solution of a optimization problem.In Paper D, the problem of modeling a floating body by a positive real function is investigated. The main focus is on modeling the radiation forces and moment. The radiation forces are described as the forces that make a floating body oscillate in calm water. These forces are passive and usually they are modeled with system of high degree. Thus, for efficient computer simulation it is necessary to obtain a low order system which approximates the original one. In this paper, the procedure developed in Paper C is employed. Thus, this paper demonstrates the usefulness of the methodology described in Paper C for a real world application.In Paper E, an algorithm to compute the steady-state solution of a discrete-type Riccati equation, the Covariance Extension Equation, is considered. The algorithm is based on a homotopy continuation method with predictor-corrector steps. Although this approach does not seem to offer particular advantage to previous solvers, it provides insights into issues such as positive degree and model reduction, since the rank of the solution of the covariance extension problem coincides with the degree of the shaping filter. In Paper F a new algorithm for the computation of the analytic interpolant of a bounded degree is proposed. It applies to the class of non-strictly positive real interpolants and it is capable of treating the case with boundary spectral zeros. Thus, in Paper~F, we deal with a class of interpolation problems which could not be treated by the optimization-based algorithm proposed by Byrnes, Georgiou and Lindquist. The new procedure computes interpolants by solving a system of nonlinear equations. The solution of the system of nonlinear equations is obtained by a homotopy continuation method. / QC 20100721
|
2 |
A convex optimization approach to complexity constrained analytic interpolation with applications to ARMA estimation and robust controlBlomqvist, Anders January 2005 (has links)
Analytical interpolation theory has several applications in systems and control. In particular, solutions of low degree, or more generally of low complexity, are of special interest since they allow for synthesis of simpler systems. The study of degree constrained analytic interpolation was initialized in the early 80's and during the past decade it has had significant progress. This thesis contributes in three different aspects to complexity constrained analytic interpolation: theory, numerical algorithms, and design paradigms. The contributions are closely related; shortcomings of previous design paradigms motivate development of the theory, which in turn calls for new robust and efficient numerical algorithms. Mainly two theoretical developments are studied in the thesis. Firstly, the spectral Kullback-Leibler approximation formulation is merged with simultaneous cepstral and covariance interpolation. For this formulation, both uniqueness of the solution, as well as smoothness with respect to data, is proven. Secondly, the theory is generalized to matrix-valued interpolation, but then only allowing for covariance-type interpolation conditions. Again, uniqueness and smoothness with respect to data is proven. Three algorithms are presented. Firstly, a refinement of a previous algorithm allowing for multiple as well as matrix-valued interpolation in an optimization framework is presented. Secondly, an algorithm capable of solving the boundary case, that is, with spectral zeros on the unit circle, is given. This also yields an inherent numerical robustness. Thirdly, a new algorithm treating the problem with both cepstral and covariance conditions is presented. Two design paradigms have sprung out of the complexity constrained analytical interpolation theory. Firstly, in robust control it enables low degree Hinf controller design. This is illustrated by a low degree controller design for a benchmark problem in MIMO sensitivity shaping. Also, a user support for the tuning of controllers within the design paradigm for the SISO case is presented. Secondly, in ARMA estimation it provides unique model estimates, which depend smoothly on the data as well as enables frequency weighting. For AR estimation, a covariance extension approach to frequency weighting is discussed, and an example is given as an illustration. For ARMA estimation, simultaneous cepstral and covariance matching is generalized to include prefiltering. An example indicates that this might yield asymptotically efficient estimates. / QC 20100928
|
Page generated in 0.1104 seconds