• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5783
  • 1138
  • 723
  • 337
  • 65
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8606
  • 8606
  • 7753
  • 7111
  • 3980
  • 3979
  • 3291
  • 3213
  • 3109
  • 3109
  • 3109
  • 3109
  • 3109
  • 1164
  • 1157
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Antenna study and design for ultra wideband communication applications

Liang, Jianxin January 2006 (has links)
Since the release by the Federal Communications Commission (FCC) of a bandwidth of 7.5GHz (from 3.1GHz to 10.6GHz) for ultra wideband (UWB) wireless communications, UWB is rapidly advancing as a high data rate wireless communication technology. As is the case in conventional wireless communication systems, an antenna also plays a very crucial role in UWB systems. However, there are more challenges in designing a UWB antenna than a narrow band one. A suitable UWB antenna should be capable of operating over an ultra wide bandwidth as allocated by the FCC. At the same time, satisfactory radiation properties over the entire frequency range are also necessary. Another primary requirement of the UWB antenna is a good time domain performance, i. e. a good impulse response with minimal distortion. This thesis focuses on UWB antenna design and analysis. Studies have been undertaken covering the areas of UWB fundamentals and antenna theory. Extensive investigations were also carried out on two different types of UWB antennas. The first type of antenna studied in this thesis is circular disc monopole antenna. The vertical disc monopole originates from conventional straight wire monopole by replacing the wire element with a disc plate to enhance the operating bandwidth substantially. Based on the understanding of vertical disc monopole, two more compact versions featuring low-profile and compatibility to printed circuit board are proposed and studied. Both of them are printed circular disc monopoles, one fed by a micro-strip line, while the other fed by a co-planar waveguide (CPW). The second type of UWB antenna is elliptical/circular slot antenna, which can also be fed by either micro-strip line or CPW. The performances and characteristics of UWB disc monopole and elliptical/circular slot antenna are investigated in both frequency domain and time domain. The design parameters for achieving optimal operation of the antennas are also analyzed extensively in order to understand the antenna operations. It has been demonstrated numerically and experimentally that both types of antennas are suitable for UWB applications.
82

Improving relay based cellular networks performance in highly user congested and emergency situations

Mei, Haibo January 2012 (has links)
Relay based cellular networks (RBCNs) are the technologies that incorporate multi-hop communication into traditional cellular networks. A RBCN can potentially support higher data rates, more stable radio coverage and more dynamic services. In reality, RBCNs still suffer from performance degradation in terms of high user congestion, base station failure and overloading in emergency situations. The focus of this thesis is to explore the potential to improve IEEE802.16j supported RBCN performance in user congestion and emergency situations using adjustments to the RF layer (by antenna adjustments or extensions using multi-hop) and cooperative adjustment algorithms, e.g. based on controlling frequency allocation centrally and using distributed approaches. The first part of this thesis designs and validates network reconfiguration algorithms for RBCN, including a cooperative antenna power control algorithm and a heuristic antenna tilting algorithm. The second part of this thesis investigates centralized and distributed dynamic frequency allocation for higher RBCN frequency efficiency, network resilience, and computation simplicity. It is demonstrated that these benefits mitigate user congestion and base station failure problems significantly. Additionally, interweaving coordinated dynamic frequency allocation and antenna tilting is investigated in order to obtain the benefits of both actions. The third part of this thesis incorporates Delay Tolerate Networking (DTN) technology into RBCN to let users self-organize to connect to functional base station through multi-hops supported by other users. Through the use of DTN, RBCN coverage and performance are improved. This thesis explores the augmentation of DTN routing protocols to let more un-covered users connect to base stations and improve network load balancing
83

Design and applications of optical transformation devices

Bao, Di January 2012 (has links)
This thesis provides an insight into the designing, physical realization and characterization of optical transformation devices. It begins with an introduction to the discrete coordinate transformation with a design example of a carpet cloak. The realization and characterization of materials, namely a dielectric disk matrix and polyurethane/BaTiO3 foam composite, for constructing transformation optics devices are studied both numerically and experimentally. Two different kinds of low loss and broadband all-dielectric realisations of OT devices are designed and experimentally demonstrated. First, the cloaking structure made of a high-ǫ dielectric-loaded foam mixture is reported. A polyurethane foam, mixed with different ratios of barium titanate is used to produce the required range of permittivities, and the invisibility cloak is demonstrated to work for all incident angles, over a wide range of microwave frequencies. Then, based on a study on the properties of periodic dielectric particles, the cloak, realized with periodic dielectric cylinders, is proposed. The required dielectric map for the cloak is achieved by means of manipulating the dimensions, or spatial density, of the periodically distributed dielectric cylinders embedded in the host medium, whose permittivity is close to one. The scattering reduction effects are verified through both simulation and experimental results. The performances of the two different kinds of cloak are also compared quantitatively. Last, but not least, an extraordinary-transmission (ET) device made from commercially available ceramics and Teflon is designed, which exhibits broadband transmission through a sub-wavelength aperture. It is verified both numerically and experimentally that the device can provide transmission with a -3 dB bandwidth of more than 1 GHz, in a region which would otherwise be a stop band caused by the sub-wavelength aperture in an X-band waveguide.
84

Traffic control mechanisms with cell rate simulation for ATM networks

Freire, Fonseca Paula Christina January 1996 (has links)
No description available.
85

Computer models for musical instrument identification

Chetry, Nicolas D. January 2006 (has links)
A particular aspect in the perception of sound is concerned with what is commonly termed as texture or timbre. From a perceptual perspective, timbre is what allows us to distinguish sounds that have similar pitch and loudness. Indeed most people are able to discern a piano tone from a violin tone or able to distinguish different voices or singers. This thesis deals with timbre modelling. Specifically, the formant theory of timbre is the main theme throughout. This theory states that acoustic musical instrument sounds can be characterised by their formant structures. Following this principle, the central point of our approach is to propose a computer implementation for building musical instrument identification and classification systems. Although the main thrust of this thesis is to propose a coherent and unified approach to the musical instrument identification problem, it is oriented towards the development of algorithms that can be used in Music Information Retrieval (MIR) frameworks. Drawing on research in speech processing, a complete supervised system taking into account both physical and perceptual aspects of timbre is described. The approach is composed of three distinct processing layers. Parametric models that allow us to represent signals through mid-level physical and perceptual representations are considered. Next, the use of the Line Spectrum Frequencies as spectral envelope and formant descriptors is emphasised. Finally, the use of generative and discriminative techniques for building instrument and database models is investigated. Our system is evaluated under realistic recording conditions using databases of isolated notes and melodic phrases.
86

Space-variant picture coding

Popkin, Timothy John January 2010 (has links)
Space-variant picture coding techniques exploit the strong spatial non-uniformity of the human visual system in order to increase coding efficiency in terms of perceived quality per bit. This thesis extends space-variant coding research in two directions. The first of these directions is in foveated coding. Past foveated coding research has been dominated by the single-viewer, gaze-contingent scenario. However, for research into the multi-viewer and probability-based scenarios, this thesis presents a missing piece: an algorithm for computing an additive multi-viewer sensitivity function based on an established eye resolution model, and, from this, a blur map that is optimal in the sense of discarding frequencies in least-noticeable- rst order. Furthermore, for the application of a blur map, a novel algorithm is presented for the efficient computation of high-accuracy smoothly space-variant Gaussian blurring, using a specialised filter bank which approximates perfect space-variant Gaussian blurring to arbitrarily high accuracy and at greatly reduced cost compared to the brute force approach of employing a separate low-pass filter at each image location. The second direction is that of artifi cially increasing the depth-of- field of an image, an idea borrowed from photography with the advantage of allowing an image to be reduced in bitrate while retaining or increasing overall aesthetic quality. Two synthetic depth of field algorithms are presented herein, with the desirable properties of aiming to mimic occlusion eff ects as occur in natural blurring, and of handling any number of blurring and occlusion levels with the same level of computational complexity. The merits of this coding approach have been investigated by subjective experiments to compare it with single-viewer foveated image coding. The results found the depth-based preblurring to generally be significantly preferable to the same level of foveation blurring.
87

Algorithms for trajectory integration in multiple views

Kayumbi-Kabeya, Gabin-Wilfried January 2009 (has links)
This thesis addresses the problem of deriving a coherent and accurate localization of moving objects from partial visual information when data are generated by cameras placed in di erent view angles with respect to the scene. The framework is built around applications of scene monitoring with multiple cameras. Firstly, we demonstrate how a geometric-based solution exploits the relationships between corresponding feature points across views and improves accuracy in object location. Then, we improve the estimation of objects location with geometric transformations that account for lens distortions. Additionally, we study the integration of the partial visual information generated by each individual sensor and their combination into one single frame of observation that considers object association and data fusion. Our approach is fully image-based, only relies on 2D constructs and does not require any complex computation in 3D space. We exploit the continuity and coherence in objects' motion when crossing cameras' elds of view. Additionally, we work under the assumption of planar ground plane and wide baseline (i.e. cameras' viewpoints are far apart). The main contributions are: i) the development of a framework for distributed visual sensing that accounts for inaccuracies in the geometry of multiple views; ii) the reduction of trajectory mapping errors using a statistical-based homography estimation; iii) the integration of a polynomial method for correcting inaccuracies caused by the cameras' lens distortion; iv) a global trajectory reconstruction algorithm that associates and integrates fragments of trajectories generated by each camera.
88

Advanced automatic mixing tools for music

Perez Gonzalez, Enrique January 2010 (has links)
This thesis presents research on several independent systems that when combined together can generate an automatic sound mix out of an unknown set of multi‐channel inputs. The research explores the possibility of reproducing the mixing decisions of a skilled audio engineer with minimal or no human interaction. The research is restricted to non‐time varying mixes for large room acoustics. This research has applications in dynamic sound music concerts, remote mixing, recording and postproduction as well as live mixing for interactive scenes. Currently, automated mixers are capable of saving a set of static mix scenes that can be loaded for later use, but they lack the ability to adapt to a different room or to a different set of inputs. In other words, they lack the ability to automatically make mixing decisions. The automatic mixer research depicted here distinguishes between the engineering mixing and the subjective mixing contributions. This research aims to automate the technical tasks related to audio mixing while freeing the audio engineer to perform the fine‐tuning involved in generating an aesthetically‐pleasing sound mix. Although the system mainly deals with the technical constraints involved in generating an audio mix, the developed system takes advantage of common practices performed by sound engineers whenever possible. The system also makes use of inter‐dependent channel information for controlling signal processing tasks while aiming to maintain system stability at all times. A working implementation of the system is described and subjective evaluation between a human mix and the automatic mix is used to measure the success of the automatic mixing tools.
89

Semantic multimedia analysis using knowledge and context

Nikolopoulos, Spyridon January 2012 (has links)
The difficulty of semantic multimedia analysis can be attributed to the extended diversity in form and appearance exhibited by the majority of semantic concepts and the difficulty to express them using a finite number of patterns. In meeting this challenge there has been a scientific debate on whether the problem should be addressed from the perspective of using overwhelming amounts of training data to capture all possible instantiations of a concept, or from the perspective of using explicit knowledge about the concepts’ relations to infer their presence. In this thesis we address three problems of pattern recognition and propose solutions that combine the knowledge extracted implicitly from training data with the knowledge provided explicitly in structured form. First, we propose a BNs modeling approach that defines a conceptual space where both domain related evi- dence and evidence derived from content analysis can be jointly considered to support or disprove a hypothesis. The use of this space leads to sig- nificant gains in performance compared to analysis methods that can not handle combined knowledge. Then, we present an unsupervised method that exploits the collective nature of social media to automatically obtain large amounts of annotated image regions. By proving that the quality of the obtained samples can be almost as good as manually annotated images when working with large datasets, we significantly contribute towards scal- able object detection. Finally, we introduce a method that treats images, visual features and tags as the three observable variables of an aspect model and extracts a set of latent topics that incorporates the semantics of both visual and tag information space. By showing that the cross-modal depen- dencies of tagged images can be exploited to increase the semantic capacity of the resulting space, we advocate the use of all existing information facets in the semantic analysis of social media.
90

A user-assisted approach to multiple instrument music transcription

Kirchhoff, Holger January 2014 (has links)
The task of automatic music transcription has been studied for several decades and is regarded as an enabling technology for a multitude of applications such as music retrieval and discovery, intelligent music processing and large-scale musicological analyses. It refers to the process of identifying the musical content of a performance and representing it in a symbolic format. Despite its long research history, fully automatic music transcription systems are still error prone and often fail when more complex polyphonic music is analysed. This gives rise to the question in what ways human knowledge can be incorporated in the transcription process. This thesis investigates ways to involve a human user in the transcription process. More specifically, it is investigated how user input can be employed to derive timbre models for the instruments in a music recording, which are employed to obtain instrument-specific (parts-based) transcriptions. A first investigation studies different types of user input in order to derive instrument models by means of a non-negative matrix factorisation framework. The transcription accuracy of the different models is evaluated and a method is proposed that refines the models by allowing each pitch of each instrument to be represented by multiple basis functions. A second study aims at limiting the amount of user input to make the method more applicable in practice. Different methods are considered to estimate missing non-negative basis functions when only a subset of basis functions can be extracted based on the user information. A method is proposed to track the pitches of individual instruments over time by means of a Viterbi framework in which the states at each time frame contain several candidate instrument-pitch combinations. A transition probability is employed that combines three different criteria: the frame-wise reconstruction error of each combination, a pitch continuity measure that favours similar pitches in consecutive frames, and an explicit activity model for each instrument. The method is shown to outperform other state-of-the-art multi-instrument tracking methods. Finally, the extraction of instrument models that include phase information is investigated as a step towards complex matrix decomposition. The phase relations between the partials of harmonic sounds are explored as a time-invariant property that can be employed to form complex-valued basis functions. The application of the model for a user-assisted transcription task is illustrated with a saxophone example.

Page generated in 0.2724 seconds