• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 476
  • 385
  • 95
  • 59
  • 37
  • 21
  • 17
  • 11
  • 10
  • 7
  • 6
  • 6
  • 4
  • 3
  • 2
  • Tagged with
  • 1343
  • 1343
  • 437
  • 267
  • 185
  • 176
  • 135
  • 134
  • 121
  • 113
  • 109
  • 107
  • 105
  • 99
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Development of New Methods for Inferring and Evaluating Phylogenetic Trees

Hill, Tobias January 2007 (has links)
Inferring phylogeny is a difficult computational problem. Heuristics are necessary to minimize the time spent evaluating non optimal trees. In paper I, we developed an approach for heuristic searching, using a genetic algorithm. Genetic algorithms mimic the natural selections ability to solve complex problems. The algorithm can reduce the time required for weighted maximum parsimony phylogenetic inference using protein sequences, especially for data sets involving large number of taxa. Evaluating and comparing the ability of phylogenetic methods to infer the correct topology is complex. In paper II, we developed software that determines the minimum subtree prune and regraft (SPR) distance between binary trees to ease the process. The minimum SPR distance can be used to measure the incongruence between trees inferred using different methods. Given a known topology the methods could be evaluated on their ability to infer the correct phylogeny given specific data. The minimum SPR software the intermediate trees that separate two binary trees. In paper III we developed software that given a set of incongruent trees determines the median SPR consensus tree i.e. the tree that explains the trees with a minimum of SPR operations. We investigated the median SPR consensus tree and its possible interpretation as a species tree given a set of gene trees. We used a set of α-proteobacteria gene trees to test the ability of the algorithm to infer a species tree and compared it to previous studies. The results show that the algorithm can successfully reconstruct a species tree. Expressed sequence tag (EST) data is important in determining intron-exon boundaries, single nucleotide polymorphism and the coding sequence of genes. In paper IV we aligned ESTs to the genome to evaluate the quality of EST data. The results show that many ESTs are contaminated by vector sequences and low quality regions. The reliability of EST data is largely determined by the clustering of the ESTs and the association of the clusters to the correct portion of genome. We investigate the performance of EST clustering using the genome as template compared to previously existing methods using pair-wise alignments. The results show that using the genome as guidance improves the resulting EST clusters in respect to the extent ESTs originating from the same transcriptional unit are separated into disjunct clusters.
92

An Effective Hybrid Genetic Algorithm with Priority Selection for the Traveling Salesman Problem

Hu, Je-wei 07 September 2007 (has links)
Traveling salesman problem (TSP) is a well-known NP-hard problem which can not be solved within a polynomial bounded computation time. However, genetic algorithm (GA) is a familiar heuristic algorithm to obtain near-optimal solutions within reasonable time for TSPs. In TSPs, the geometric properties are problem specific knowledge can be used to enhance GAs. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. Therefore, this information can help GAs to pay more attention to fine tour segments and without considering long tour segments as often. Consequently, we propose a new algorithm, called intelligent-OPT hybrid genetic algorithm (IOHGA), to exploit local optimal tour segments and enhance the searching process in order to reduce the execution time and improve the quality of the offspring. The local optimal tour segments are assigned higher priorities for the selection of tour segments to be appeared in a short tour. By this way, tour segments of a TSP are divided into two separate sets. One is a candidate set which contains the candidate fine tour segments and the other is a non-candidate set which contains non-candidate fine tour segments. According to the priorities of tour segments, we devise two genetic operators, the skewed production (SP) and the fine subtour crossover (FSC). Besides, we combine the traditional GA with 2-OPT local search algorithm but with some modifications. The modified 2-OPT is named the intelligent OPT (IOPT). Simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that generally the IOHGA could obtain near-optimal solutions with less time and higher accuracy than the hybrid genetic algorithm with simulated annealing algorithm and the genetic algorithm using the gene expression algorithm. Thus, the IOHGA is an effective algorithm for solving TSPs. If the case is not focused on the optimal solution, the IOHGA can provide good near-optimal solutions rapidly. Therefore, the IOHGA could be incorporated with some clustering algorithm and applied to mobile agent planning problems (MAP) in a real-time environment.
93

Mobile Location Estimation Using Genetic Algorithm and Clustering Technique for NLOS Environments

Hung, Chung-Ching 10 September 2007 (has links)
For the mass demands of personalized security services, such as tracking, supervision, and emergent rescue, the location technologies of mobile communication have drawn much attention of the governments, academia, and industries around the world. However, existing location methods cannot satisfy the requirements of low cost and high accuracy. We hypothesized that a new mobile location algorithm based on the current GSM system will effectively improve user satisfaction. In this study, a prototype system will be developed, implemented, and experimented by integrating the useful information such as the geometry of the cell layout, and the related mobile positioning technologies. The intersection of the regions formed by the communication space of the base stations will be explored. Furthermore, the density-based clustering algorithm (DCA) and GA-based algorithm will be designed to analyze the intersection region and estimate the most possible location of a mobile phone. Simulation results show that the location error of the GA-based is less than 0.075 km for 67% of the time, and less than 0.15 km for 95% of the time. The results of the experiments satisfy the location accuracy demand of E-911.
94

Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction

Sakata, M., Aoyagi, S., Ogura, T., Nishibori, E. 19 January 2007 (has links)
No description available.
95

Intelligent Scheduling of Medical Procedures

Sui, Yang January 2009 (has links)
In the Canadian universal healthcare system, public access to care is not limited by monetary or social economic factors. Rather, waiting time is the dominant factor limiting public access to healthcare. Excessive waiting lowers quality of life while waiting, and worsening of condition during the delay, which could lower the effectiveness of the planned operation. Excessive waiting has also been shown to carry economic cost. At the core of the wait time problem is a resource scheduling and management issue. The scheduling of medical procedures is a complex and difficult task. The goal of research in this thesis is to develop the foundation models and algorithms for a resource optimization system. Such a system will help healthcare administrators intelligently schedule procedures to optimize resource utilization, identify bottlenecks and reduce patient wait times. This thesis develops a novel framework, the MPSP model, to model medical procedures. The MPSP model is designed to be general and versatile to model a variety of different procedures. The specific procedure modeled in detail in this thesis is the haemodialysis procedure. Solving the MPSP model exactly to obtain guaranteed optimal solutions is computationally expensive and not practical for real-time scheduling. A fast, high quality evolutionary heuristic, gMASH, is developed to quickly solve large problems. The MPSP model and the gMASH heuristic form a foundation for an intelligent medical procedures scheduling and optimization system.
96

Design and Analysis of Intelligent Fuzzy Tension Controllers for Rolling Mills

Liu, Jingrong January 2002 (has links)
This thesis presents a fuzzy logic controller aimed at maintaining constant tension between two adjacent stands in tandem rolling mills. The fuzzy tension controller monitors tension variation by resorting to electric current comparison of different operation modes and sets the reference for speed controller of the upstream stand. Based on modeling the rolling stand as a single input single output linear discrete system, which works in the normal mode and is subject to internal and external noise, the element settings and parameter selections in the design of the fuzzy controller are discussed. To improve the performance of the fuzzy controller, a dynamic fuzzy controller is proposed. By switching the fuzzy controller elements in relation to the step response, both transient and stationary performances are enhanced. To endow the fuzzy controller with intelligence of generalization, flexibility and adaptivity, self-learning techniques are introduced to obtain fuzzy controller parameters. With the inclusion of supervision and concern for conventional control criteria, the parameters of the fuzzy inference system are tuned by a backward propagation algorithm or their optimal values are located by means of a genetic algorithm. In simulations, the neuro-fuzzy tension controller exhibits the real-time applicability, while the genetic fuzzy tension controller reveals an outstanding global optimization ability.
97

Intelligent Scheduling of Medical Procedures

Sui, Yang January 2009 (has links)
In the Canadian universal healthcare system, public access to care is not limited by monetary or social economic factors. Rather, waiting time is the dominant factor limiting public access to healthcare. Excessive waiting lowers quality of life while waiting, and worsening of condition during the delay, which could lower the effectiveness of the planned operation. Excessive waiting has also been shown to carry economic cost. At the core of the wait time problem is a resource scheduling and management issue. The scheduling of medical procedures is a complex and difficult task. The goal of research in this thesis is to develop the foundation models and algorithms for a resource optimization system. Such a system will help healthcare administrators intelligently schedule procedures to optimize resource utilization, identify bottlenecks and reduce patient wait times. This thesis develops a novel framework, the MPSP model, to model medical procedures. The MPSP model is designed to be general and versatile to model a variety of different procedures. The specific procedure modeled in detail in this thesis is the haemodialysis procedure. Solving the MPSP model exactly to obtain guaranteed optimal solutions is computationally expensive and not practical for real-time scheduling. A fast, high quality evolutionary heuristic, gMASH, is developed to quickly solve large problems. The MPSP model and the gMASH heuristic form a foundation for an intelligent medical procedures scheduling and optimization system.
98

GAGS : A Novel Microarray Gene Selection Algorithm for Gene Expression Classification

Wu, Kuo-yi 30 July 2010 (has links)
In this thesis, we have proposed a novel microarray gene selection algorithm consisting of five processes for solving gene expression classification problem. A normalization process is first used to remove the differences among different scales of genes. Second, an efficient gene ranking process is proposed to filter out the unrelated genes. Then, the genetic algorithm is adopted to find the informative gene subsets for each class. For each class, these informative gene subsets are adopted to classify the testing dataset separately. Finally, the separated classification results are fused to one final classification result. In the first experiment, 4 microarray datasets are used to verify the performance of the proposed algorithm. The experiment is conducted using the leave-one-out-cross-validation (LOOCV) resampling method. We compared the proposed algorithm with twenty one existing methods. The proposed algorithm obtains three wins in four datasets, and the accuracies of three datasets all reach 100%. In the second experiment, 9 microarray datasets are used to verify the proposed algorithm. The experiment is conducted using 50% VS 50% resampling method. Our proposed algorithm obtains eight wins among nine datasets for all competing methods.
99

CUDA-Based Modified Genetic Algorithms for Solving Fuzzy Flow Shop Scheduling Problems

Huang, Yi-chen 23 August 2010 (has links)
The flow shop scheduling problems with fuzzy processing times and fuzzy due dates are investigated in this paper. The concepts of earliness and tardiness are interpreted by using the concepts of possibility and necessity measures that were developed in fuzzy sets theory. And the objective function will be taken into account through the different combinations of possibility and necessity measures. The genetic algorithm will be invoked to tackle these objective functions. A new idea based on longest common substring will be introduced at the best-keeping step. This new algorithm reduces the number of generations needed to reach the stopping criterion. Also, we implement the algorithm on CUDA. The numerical experiments show that the performances of the CUDA program on GPU compare favorably to the traditional programs on CPU.
100

The Optimization Analysis on Dual Input Transmission Mechanisms of Wind Turbines

Yang, Chung-hsuan 18 July 2012 (has links)
¡@¡@The dynamic power flow in a dual-input parallel planetary gear train system is simulated in this study. Different wind powers for the small wind turbines are merged to the synchronous generator in this system to simplify and reduce the cost of the system. Nonlinear equations of motion of these gears in the planetary system are derived. The fourth order Runge-Kutta method has employed to calculate the time varied torque, root stress and Hertz stress between engaged gears. The genetic optimization method has also applied to derive the optimized tooth form factors, e.g. module and the tooth face width. ¡@¡@The dynamic power flow patterns in this dual input system under various input conditions, e.g. two equal and unequal input powers, only single available input power, have been simulated and illustrated. The corresponding dynamic stress and safety factor variations have also been explored. Numerical results reveal that the proposed dual-input planetary gear system is feasible. To improve the efficiency of this wind power generation system. An inertia variable flywheel system has also been added at the output end to store or release the kinetic energies at higher or lower wind speed cases. A magnetic density variable synchronous generator has also been studied in this work to investigate the possible efficiency improvement in the system. Numerical results indicate that these inertia variable flywheel and magnetic density variable generator may have advantages in power generation.

Page generated in 0.0971 seconds