Spelling suggestions: "subject:"anda malaria"" "subject:"ando malaria""
141 |
Structural and functional studies of Plasmodium falciparum protein kinase 5 and Cks proteinsHolton, S. J. January 2002 (has links)
No description available.
|
142 |
Rosetting of Plasmodium falciparium infected erythrocytesRowe, Jane Alexandra January 1994 (has links)
No description available.
|
143 |
Monoclonal antibodies to merozoites of Plasmodium falciparumStorey, E. January 1986 (has links)
No description available.
|
144 |
Molecular studies on merozoites of Plasmodium falciparumBuranakitjaroen, P. January 1986 (has links)
No description available.
|
145 |
The biology of Plasmodium falciparum gametocytesHayward, Rhian Elizabeth January 1997 (has links)
No description available.
|
146 |
An investigation of the interactions between Plasmodium falciparum-infected erythrocytes and endotheliumMcCormick, Christopher John January 1995 (has links)
No description available.
|
147 |
Purification and characterisation of plasmodium falciparum Hypoxanthine phosphoribosyltransferase.Murungi, Edwin Kimathi January 2007 (has links)
<p>Malaria remains the most important parasitic disease worldwide. It is estimated that over 500 million infections and more that 2.7 million deaths arising from malaria occur each year. Most (90%) of the infections occur in Africa with the most affected groups being children of less than five years of age and women. this dire situation is exacerbated by the emrggence of drug resistant strains of Plasmodium falciparum. The work reported in this thesis focuses on improving the purification of PfHPRT by investigating the characteristics of anion exchange DE-52 chromatography (the first stage of purification), developing an HPLC gel filtration method for examining the quaternary structure of the protein and possible end stage purification, and initialcrystalization trials. a homology model of the open, unligaded PfHPRT is constructed using the atoomic structures of human, T.ccruz and STryphimurium HPRT as templates.</p>
|
148 |
Construction of a library of the plasmids of Bacillus thuringiensis subsp. israelensis and identification of a lameda clone encoding the 135 kDa mosquitocida polypeptideLitz, Sara Leandra January 1990 (has links)
Bacillus thuringiensis subsp. israelensis (B.t.i.) produces a plasmid encoded parasporal crystalline protein which is larvacidal to mosquitoes carrying parasites for malaria and other infectious diseases. The purpose of this study was to construct a library of random fragments from the nine plasmids of wild type B.t.i. strain 402. The library was to be utilized in order to clone a 135kDa mosquitocidal polypeptide carried on a 108 kb B.t.i. plasmid.The library construction involved isolation of plasmid DNA by equilibrium density centrifugation, generation of random fragments of the nine plasmids by a partial Sau3A restriction digest, and ligation of these fragments into XbaI-BamHI restricted Lambda GEM-11 vector. Escherichia coli strain LE392 was infected by the packaged recombinant lambda and over 1000plaques were pooled to comprise the library. In order to verify construction of the library, both plaque screens of the library and Southern Analysis of restricted clones subjected to agarose gel electrophoresis were performed with labeled probes. The labeled probes were included: 1) radioactive end-labeled oligonucleotides constructed from published sequences of the B.t.i. 135 kDa toxic protein, 2) radioactive end-labeled random fragments from all nine plasmids of B.t.i., 3) radiolabeled entire plasmids of all nine plasmids of B.t.i., and 4) dioxigenin-labeled oligonucleotides. No homology between the lambda library digested DNA and the B.t.i. plasmid was observed. The results suggested that no lambda library of B.t.i. was constructed and, therefore, a lambda clone encoding the 135 kDa mosquitocidal polypeptide was not isolated. / Department of Biology
|
149 |
Investigations into the novel aspects of the molecular biology of Plasodium falciparumAnjam Khan, C. M. January 1990 (has links)
No description available.
|
150 |
Unstructured proteins of the malaria parasite Plasmodium falciparum as vaccine candidatesDhanasarnsombut, Kelwalin January 2013 (has links)
Malaria vaccine research has been battling with persistent challenges, including polymorphisms of vaccine antigens, difficulties with production processes, and limited immune protection against the disease. Intrinsically unstructured proteins (IUPs) are a fairly newly classified group of proteins that have no stable 3D structure and are generally heat-resistant. They usually contain low complexity regions and repetitive sequences, both of which are distinct characteristics of the malaria proteome. Surprisingly, some of the vaccine candidates that have been extensively studied were later reported to have unstructured regions, some of which serve as targets of protective immunity. In keeping with their interesting immunological profiles and their unique properties, which are exceptionally beneficial for vaccine production, malarial IUP antigens may be good vaccine candidates. This PhD project has the following aims:- 1) to develop a synthetic unstructured protein antigen based on the Block 2 region of MSP-1, named the MSP-1 hybrid 2) to characterize a novel vaccine antigen derived from the MSP-3.3 protein, namely an IUP region of PF10_0347 gene product, for its potential as a vaccine candidate 3) to develop a second-generation vaccine by combining the MSP-1 hybrid, with two allelic variants of MSP-2, to overcome antigenic polymorphism and strain-specific immune responses 4) to validate protocols for IUP identification from proteins extracted from the malaria parasite. This study showed that 1) MSP-1 hybrid production was scalable, yielding high protein yields with comparable immunological properties to small-scale production. MSP-1 hybrid was shown to be compatible with different adjuvants, and elicited specific antibodies covering the whole range of Block 2 allelic diversities. 2) A novel antigen, MSP-3.3C, an IUP based on the 3’ region of the PF10_0347 gene, was cloned, expressed and purified. Anti-MSP3.3C antibodies showed very strong parasite growth inhibitory effects in vitro. 3) The MSP-multihybrid antigen was expressed using simple techniques, but only at low levels. It contains epitopes from all three parasite antigen components, and is recognized by specific naturally acquired antibodies. 4) an unconventional 2D gel technique was tested as a method of malaria parasite IUP identification. Plans for further validation of this technique were discussed.
|
Page generated in 0.0484 seconds