Spelling suggestions: "subject:"aneel polinomial""
1 |
Ideais primos em skew anéis de polinômiosGobbi, Luciane January 2007 (has links)
Sejam R um anel, p um automorfismo e d uma derivação de R. Este trabalho tem por objetivo estudar os ideais primos em skew anel de Laurent R < x;p >, skew anel de polinômios do tipo automorfismo R[x;p ] e skew anel de polinômios do tipo derivação R[x; d]. Para os casos R < x;p > e R[x; d] obtemos uma descrição completa dos ideais primos R-disjuntos. Em R[x;p] obtemos uma caracterização dos ideais R-disjuntos fortemente -primos. Além disto, quando R é um anel primo, obtemos uma caracterização dos ideais primos R-disjuntos de R[x;p]. / Let R be a ring, an automorphism and d a derivation of R. The purpose of this dissertation is to study prime ideals in skew Laurent polynomial rings R < x;p >, skew polynomial ring of automorphism type R[x;p ] and skew polynomial ring of derivation type R[x; d]. We obtained a full description of R-disjoint prime ideals in R < x;p > and R[x; d]. In the case of R[x;p] we obtained a characterization of strongly p -prime R-disjoint ideals. Furthermore, when R is a prime ring, we obtain a characterization of the R-disjoint prime ideals of R[x;p].
|
2 |
Ideais primos em skew anéis de polinômiosGobbi, Luciane January 2007 (has links)
Sejam R um anel, p um automorfismo e d uma derivação de R. Este trabalho tem por objetivo estudar os ideais primos em skew anel de Laurent R < x;p >, skew anel de polinômios do tipo automorfismo R[x;p ] e skew anel de polinômios do tipo derivação R[x; d]. Para os casos R < x;p > e R[x; d] obtemos uma descrição completa dos ideais primos R-disjuntos. Em R[x;p] obtemos uma caracterização dos ideais R-disjuntos fortemente -primos. Além disto, quando R é um anel primo, obtemos uma caracterização dos ideais primos R-disjuntos de R[x;p]. / Let R be a ring, an automorphism and d a derivation of R. The purpose of this dissertation is to study prime ideals in skew Laurent polynomial rings R < x;p >, skew polynomial ring of automorphism type R[x;p ] and skew polynomial ring of derivation type R[x; d]. We obtained a full description of R-disjoint prime ideals in R < x;p > and R[x; d]. In the case of R[x;p] we obtained a characterization of strongly p -prime R-disjoint ideals. Furthermore, when R is a prime ring, we obtain a characterization of the R-disjoint prime ideals of R[x;p].
|
3 |
Ideais primos em skew anéis de polinômiosGobbi, Luciane January 2007 (has links)
Sejam R um anel, p um automorfismo e d uma derivação de R. Este trabalho tem por objetivo estudar os ideais primos em skew anel de Laurent R < x;p >, skew anel de polinômios do tipo automorfismo R[x;p ] e skew anel de polinômios do tipo derivação R[x; d]. Para os casos R < x;p > e R[x; d] obtemos uma descrição completa dos ideais primos R-disjuntos. Em R[x;p] obtemos uma caracterização dos ideais R-disjuntos fortemente -primos. Além disto, quando R é um anel primo, obtemos uma caracterização dos ideais primos R-disjuntos de R[x;p]. / Let R be a ring, an automorphism and d a derivation of R. The purpose of this dissertation is to study prime ideals in skew Laurent polynomial rings R < x;p >, skew polynomial ring of automorphism type R[x;p ] and skew polynomial ring of derivation type R[x; d]. We obtained a full description of R-disjoint prime ideals in R < x;p > and R[x; d]. In the case of R[x;p] we obtained a characterization of strongly p -prime R-disjoint ideals. Furthermore, when R is a prime ring, we obtain a characterization of the R-disjoint prime ideals of R[x;p].
|
4 |
Ideais primos e ideais fechados em anéis de polinômiosZoch, Lisiane January 2005 (has links)
Este trabalho tem por objetivo estudar os ideais primos do anel de polinômios R[X], com R um anel primo, não necessariamente comutativo. Para tanto, introduzimos o conceito de ideais principais fechados em R[X], que permite caracterizar os ideais primos como contração de ideais de Q[X] sendo definidos por polinômios mônicos irredutíveis de C[X], onde Q é o anel de quocientes µa direita de Martindale de R e C é o centro de Q, que é um corpo.
|
5 |
Ideais fechados e primos em anéis de polinômios e extensões livres centralizantesMüller, Thaísa Jacintho January 2010 (has links)
Neste trabalho, estudamos ideais primos de anéis de polinômios e extensões livres centralizantes. Sejam R um anel primo, T o anel de quocientes de Martindale de R e C o centróide estendido de R. Mostramos que existe uma correspond^encia biunívoca entre o conjunto de todos os ideais primos R-disjuntos de R[x], o conjunto de todos os ideais primos T-disjuntos de T[x] e o conjunto de todos os polinômios mônicos de C[x]. Na sequência, apresentamos um resultado inédito: dado R um anel qualquer, encontramos um anel comutativo A tal que existe uma correspond^encia biunívoca entre os ideais primos de A[x] e os ideais primos de R[x]. Por _m, dada S = R[E] uma extensão livre centralizante do anel R com base E, mostramos que existe uma correspondência biunívoca entre o conjunto de todos os ideais primos P de R[E] com P \ R = 0, o conjunto de todos os ideais primos P_ de T[E] com P_ \ T = 0 e o conjunto de todos os ideais primos de C[E]. Trabalhamos, na verdade, com uma classe mais geral que os ideais primos, que são os ideais fechados, os quais são definidos ao longo do trabalho. / In this work, we study prime ideals in polynomial rings and free centred extensions. Let R be a prime ring, T the Martindale ring of quocients of R and C the extended centroid of R. We show that there exists a one-to-one correspondence between the set of all the R-disjoint prime ideals of R[x], the set of all the R-disjoint prime ideals of T[x] and the set of all the monic polynomials of C[x]. In sequence, we present an unpublished result: let R be a ring, we nd a commutative ring A such that there exists a one-to-one correspondence between the prime ideals of A[x] and the prime ideals of R[x]. We also consider a free centred extension S = R[E] of the ring R with basis E. We show that there exists a one-to-one correspondence between the set of all prime ideals P of R[E] where P \ R = 0, the set of all prime ideals P of T[E] where P \ T = 0 and the set of all the prime ideals of C[E]. We work, in fact, with a more general class of ideals called closed ideals, that we will de ne in the text.
|
6 |
Ideais fechados e primos em anéis de polinômios e extensões livres centralizantesMüller, Thaísa Jacintho January 2010 (has links)
Neste trabalho, estudamos ideais primos de anéis de polinômios e extensões livres centralizantes. Sejam R um anel primo, T o anel de quocientes de Martindale de R e C o centróide estendido de R. Mostramos que existe uma correspond^encia biunívoca entre o conjunto de todos os ideais primos R-disjuntos de R[x], o conjunto de todos os ideais primos T-disjuntos de T[x] e o conjunto de todos os polinômios mônicos de C[x]. Na sequência, apresentamos um resultado inédito: dado R um anel qualquer, encontramos um anel comutativo A tal que existe uma correspond^encia biunívoca entre os ideais primos de A[x] e os ideais primos de R[x]. Por _m, dada S = R[E] uma extensão livre centralizante do anel R com base E, mostramos que existe uma correspondência biunívoca entre o conjunto de todos os ideais primos P de R[E] com P \ R = 0, o conjunto de todos os ideais primos P_ de T[E] com P_ \ T = 0 e o conjunto de todos os ideais primos de C[E]. Trabalhamos, na verdade, com uma classe mais geral que os ideais primos, que são os ideais fechados, os quais são definidos ao longo do trabalho. / In this work, we study prime ideals in polynomial rings and free centred extensions. Let R be a prime ring, T the Martindale ring of quocients of R and C the extended centroid of R. We show that there exists a one-to-one correspondence between the set of all the R-disjoint prime ideals of R[x], the set of all the R-disjoint prime ideals of T[x] and the set of all the monic polynomials of C[x]. In sequence, we present an unpublished result: let R be a ring, we nd a commutative ring A such that there exists a one-to-one correspondence between the prime ideals of A[x] and the prime ideals of R[x]. We also consider a free centred extension S = R[E] of the ring R with basis E. We show that there exists a one-to-one correspondence between the set of all prime ideals P of R[E] where P \ R = 0, the set of all prime ideals P of T[E] where P \ T = 0 and the set of all the prime ideals of C[E]. We work, in fact, with a more general class of ideals called closed ideals, that we will de ne in the text.
|
7 |
Ideais primos e ideais fechados em anéis de polinômiosZoch, Lisiane January 2005 (has links)
Este trabalho tem por objetivo estudar os ideais primos do anel de polinômios R[X], com R um anel primo, não necessariamente comutativo. Para tanto, introduzimos o conceito de ideais principais fechados em R[X], que permite caracterizar os ideais primos como contração de ideais de Q[X] sendo definidos por polinômios mônicos irredutíveis de C[X], onde Q é o anel de quocientes µa direita de Martindale de R e C é o centro de Q, que é um corpo.
|
8 |
Ideais primos e ideais fechados em anéis de polinômiosZoch, Lisiane January 2005 (has links)
Este trabalho tem por objetivo estudar os ideais primos do anel de polinômios R[X], com R um anel primo, não necessariamente comutativo. Para tanto, introduzimos o conceito de ideais principais fechados em R[X], que permite caracterizar os ideais primos como contração de ideais de Q[X] sendo definidos por polinômios mônicos irredutíveis de C[X], onde Q é o anel de quocientes µa direita de Martindale de R e C é o centro de Q, que é um corpo.
|
9 |
Ideais fechados e primos em anéis de polinômios e extensões livres centralizantesMüller, Thaísa Jacintho January 2010 (has links)
Neste trabalho, estudamos ideais primos de anéis de polinômios e extensões livres centralizantes. Sejam R um anel primo, T o anel de quocientes de Martindale de R e C o centróide estendido de R. Mostramos que existe uma correspond^encia biunívoca entre o conjunto de todos os ideais primos R-disjuntos de R[x], o conjunto de todos os ideais primos T-disjuntos de T[x] e o conjunto de todos os polinômios mônicos de C[x]. Na sequência, apresentamos um resultado inédito: dado R um anel qualquer, encontramos um anel comutativo A tal que existe uma correspond^encia biunívoca entre os ideais primos de A[x] e os ideais primos de R[x]. Por _m, dada S = R[E] uma extensão livre centralizante do anel R com base E, mostramos que existe uma correspondência biunívoca entre o conjunto de todos os ideais primos P de R[E] com P \ R = 0, o conjunto de todos os ideais primos P_ de T[E] com P_ \ T = 0 e o conjunto de todos os ideais primos de C[E]. Trabalhamos, na verdade, com uma classe mais geral que os ideais primos, que são os ideais fechados, os quais são definidos ao longo do trabalho. / In this work, we study prime ideals in polynomial rings and free centred extensions. Let R be a prime ring, T the Martindale ring of quocients of R and C the extended centroid of R. We show that there exists a one-to-one correspondence between the set of all the R-disjoint prime ideals of R[x], the set of all the R-disjoint prime ideals of T[x] and the set of all the monic polynomials of C[x]. In sequence, we present an unpublished result: let R be a ring, we nd a commutative ring A such that there exists a one-to-one correspondence between the prime ideals of A[x] and the prime ideals of R[x]. We also consider a free centred extension S = R[E] of the ring R with basis E. We show that there exists a one-to-one correspondence between the set of all prime ideals P of R[E] where P \ R = 0, the set of all prime ideals P of T[E] where P \ T = 0 and the set of all the prime ideals of C[E]. We work, in fact, with a more general class of ideals called closed ideals, that we will de ne in the text.
|
10 |
Sobre a simplicidade de derivações em aneis finitamente geradosTizziotti, Guilherme Chaud 03 August 2018 (has links)
Orientador: Paulo Roberto Brumatti / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-03T20:16:37Z (GMT). No. of bitstreams: 1
Tizziotti_GuilhermeChaud_M.pdf: 2310763 bytes, checksum: 1f3c5dafa0add8f39653d8a65011c769 (MD5)
Previous issue date: 2004 / Mestrado / Meste em Matemática
|
Page generated in 0.0652 seconds