• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The apoptotic mechanism of angiogenesis inhibitor, vasostatin

Keng, Chun-Lan 24 June 2003 (has links)
Abstract Vasostatin, the N-terminal 180 amino acids domain of calreticulin, induces apoptosis in endothelial cells and inhibits angiogenesis. However, the mechanism underlying the apoptosis induce by vasostatin remains elusive. In the present study, we investigated the role of (1) Fas /FasL pathway, (2) oxidative stress, and (3) nitric oxide (NO) in the apoptotic mechanism of vasostatin in endothelial cells. Recombinant vasostatin was generated and shown to induce apoptosis of bovine aortic endothelial cells (BAEC) as demonstrated by flow cytometry analysis, nucleus staining, and DNA fragmentation assay. Vasostatin elevated the levels of Fas and its adaptor, FADD, in BAEC. Furthermore, vasostatin treatment increased the activities as well as the expression of active form of caspase-8 and caspase-3 in BAEC. However, pretreatment with either caspase-3 inhibitor or caspase-8 inhibitor alone was not sufficient to blockade the vasostatin-mediated apoptosis, suggesting the involvement of other pathways. Extensive screening using an array of caspase inhibitors further supported such notion. Oxidative stress is frequently involved in the apoptosis of endothelial cells. Previous studies indicated that vasostatin enhanced WST-1-derived formazan formation despite its cytotoxic effect, suggesting vasostatin treatment might enhance the production of superoxide. By measuring the level of superoxide anion in cultured media by cytochrome c reducing test, it was found that vasostatin treatment increased the production of superoxide anion in endothelial cells. Antioxidants such as NAC, GSH, BHA partially attenuated the vasostatin-mediated cytotoxicity and cell death in endothelial cells. Noteworthingly, adding allopurinol, inhibitor of xanthine oxidase, but not other oxidase inhibitors abrogated the cytotoxicity of vasostatin, indicating that xanthine oxidase could be the source of ROS produced by vasostatin relate with apoptosis. The elecctrophoretic mobility shift assays (EMSA) suggested that vasostatin treatment increased the NF£eB DNA binding activity. Western blot analysis indicated vasostatin increased the levels of NF£eB but decreased I£eB level, which seemed to coincide with the EMSA findings. NO plays an important role in endothelial function. To investigate the role of NO in the cytotoxicity by vasostatin, analyzed the levels of NO metabolites in cultured media of endothelial cells and found that vasostatin treatment increased NO release in time- dependent manners. The expression of eNOS, but not iNOS, in endothelial cells was upregulated by vasostatin. Besides, vasostatin treatment also increased the AP-1 binding activities. Moreover, NOS inhibitor, L-NAME, or NO scavenger, carboxy-PTIO, slightly attenuated the cytotoxic effects of vasostatin in endothelial cells. In addition to direct cytotoxicity, NO may react with superoxide (O2-) to form peroxynitrite (ONOO-), which attacked the intracellular protein and caused the cell damage. Indeed, we also detected a dose-dependent increment in the nitrotyrosination of cellular protein by vasostatin treatment. Taking together, these results indicate that vasostatin induces apoptosis in endothelial cells via multiple pathways. The interactions between these distinct pathways remain to be elucidated in the future.
2

The Role of Histidine-rich Glycoprotein in Angiogenesis and Tumor Growth

Thulin, Åsa January 2009 (has links)
Histidine-rich glycoprotein (HRG) is a heparin-binding plasma protein modulating immune, hemostatic and vascular functions. I have studied the antiangiogenic functions of HRG in vitro and in vivo in order to understand the molecular mechanisms of action of HRG as an angiogenesis inhibitor. Angiogenesis is the formation of new blood vessels from the pre-existing vasculature. It is a central rate-limiting step of tumor development and thus a possible target for cancer therapeutics. Previous studies have shown that HRG has antiangiogenic functions in vivo and that the antiangiogenic effects are mediated via the proteolytically released His/Pro-rich domain of HRG. In this thesis we demonstrate that HRG can inhibit endothelial cell migration by interfering with focal adhesion and cytoskeletal turnover. Moreover we have identified the minimal active domain of HRG, a 35 amino acid peptide derived from the histidine- and proline-rich domain of HRG. Analyzing human tumor tissue samples, we have found that a His/Pro-rich fragment of HRG is bound to the vasculature from cancer patients but not to the vasculature from healthy individuals. The fragment is found in association with platelets, and we show that activated platelets can induce a functional microenvironment for the His/Pro-rich fragment. Cancer patients often display an increased coagulation and our data describe a new mechanism to confer specificity of an angiogenesis inhibitor for situations with enhanced platelet activation, as in the tumor. We have further studied the role of HRG in tumor growth by crossing HRG-deficient mice with a transgenic mouse model of pancreatic insulinoma. We show that mice lacking HRG display an elevated “angiogenic switch” and that the total tumor volume is larger in these mice than in wild type mice. HRG is also involved in regulation of platelet function and platelets can stimulate angiogenesis in various ways. We have depleted mice of platelets to study the possible connection between the function of HRG in angiogenesis and platelet regulation. Our data suggest an involvement of platelets in the antiangiogenic activities of HRG.
3

Molecular Mechanisms of Action of Histidine-rich Glycoprotein in Angiogenesis Inhibition

Lee, Chunsik January 2006 (has links)
<p>Angiogenesis, de novo synthesis of blood vessels from the pre-existing vasculature, is required both during embryonic development and in pathophysiological conditions. In particular, tumor growth needs new capillary vessels in order to both deliver oxygen and nutrients and to remove toxin and metabolites. Growth of most solid tumors would be restricted to a microscopic size in the absence of neovascularization. Angiogenesis ensues as a result of a shift in the balance between pro- and anti-angiogenic molecules.</p><p>Histidine-rich glycoprotein (HRGP) is a heparin-binding plasma protein. We showed that HRGP inhibits endothelial cell migration and adhesion to vitronectin. As a consequence, HRGP attenuates growth and vascularization of mouse model tumors. The anti-angiogenic effect of HRGP is mediated by the central histidine/proline (His/Pro)-rich domain, which must be released from the parent molecule to exert its effect. A 35-amino acid residue peptide denoted HRGP330, derived from the His/Pro-rich domain, was identified as a minimal active anti-angiogenic domain of HRGP. HRGP330 induces disruption of molecular interactions required for cell motility, such as the integrin-linked kinase/paxillin complex. Moreover, HRGP330 inhibits VEGF-induced tyrosine phosphorylation of α-actinin, a focal adhesion kinase (FAK) substrate. Consequently, the motility of endothelial cells is arrested. By use of a signal transduction antibody array, we identified FAK, paxillin and growth factor receptor-bound 2 (Grb2) as tyrosine phosphorylated in HRGP330-treated cells. We confirmed that HRGP targets focal adhesions in endothelial cells, thereby disrupting the cytoskeletal organization and the ability of endothelial cells to assemble into vessel structures. A critical role of FAK in HRGP-inhibition of angiogenesis was validated using a FAK inhibitor, geldanamycin, which allowed rescue of endothelial cell actin rearrangement.</p><p>We identified another potential mechanism in the HRGP/HRGP330 anti-angiogenic effects, exerted through regulation of tumor-associated macrophages (TAMs). HRGP/HRGP330 treatment led to reduced TAM infiltration, which in turn caused a marked decrease in VEGF and MMP-9 levels in the tumor. </p><p>Taken together, our present studies show that HRGP/HRGP330 target endothelial cell adhesion, migration, focal adhesions, and furthermore, that HRGP is involved in regulation of macrophage infiltration.</p>
4

Molecular Mechanisms of Action of Histidine-rich Glycoprotein in Angiogenesis Inhibition

Lee, Chunsik January 2006 (has links)
Angiogenesis, de novo synthesis of blood vessels from the pre-existing vasculature, is required both during embryonic development and in pathophysiological conditions. In particular, tumor growth needs new capillary vessels in order to both deliver oxygen and nutrients and to remove toxin and metabolites. Growth of most solid tumors would be restricted to a microscopic size in the absence of neovascularization. Angiogenesis ensues as a result of a shift in the balance between pro- and anti-angiogenic molecules. Histidine-rich glycoprotein (HRGP) is a heparin-binding plasma protein. We showed that HRGP inhibits endothelial cell migration and adhesion to vitronectin. As a consequence, HRGP attenuates growth and vascularization of mouse model tumors. The anti-angiogenic effect of HRGP is mediated by the central histidine/proline (His/Pro)-rich domain, which must be released from the parent molecule to exert its effect. A 35-amino acid residue peptide denoted HRGP330, derived from the His/Pro-rich domain, was identified as a minimal active anti-angiogenic domain of HRGP. HRGP330 induces disruption of molecular interactions required for cell motility, such as the integrin-linked kinase/paxillin complex. Moreover, HRGP330 inhibits VEGF-induced tyrosine phosphorylation of α-actinin, a focal adhesion kinase (FAK) substrate. Consequently, the motility of endothelial cells is arrested. By use of a signal transduction antibody array, we identified FAK, paxillin and growth factor receptor-bound 2 (Grb2) as tyrosine phosphorylated in HRGP330-treated cells. We confirmed that HRGP targets focal adhesions in endothelial cells, thereby disrupting the cytoskeletal organization and the ability of endothelial cells to assemble into vessel structures. A critical role of FAK in HRGP-inhibition of angiogenesis was validated using a FAK inhibitor, geldanamycin, which allowed rescue of endothelial cell actin rearrangement. We identified another potential mechanism in the HRGP/HRGP330 anti-angiogenic effects, exerted through regulation of tumor-associated macrophages (TAMs). HRGP/HRGP330 treatment led to reduced TAM infiltration, which in turn caused a marked decrease in VEGF and MMP-9 levels in the tumor. Taken together, our present studies show that HRGP/HRGP330 target endothelial cell adhesion, migration, focal adhesions, and furthermore, that HRGP is involved in regulation of macrophage infiltration.

Page generated in 0.0601 seconds