• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improvement of the axial buckling capability of elliptical cylindrical shells

Paschero, Maurizio 24 April 2008 (has links)
A rather thorough and novel buckling analysis of an axially-loaded orthotropic circular cylindrical shell is formulated. The analysis assumes prebuckling rotations are negligible and uses a unique re-defining of the orthotropic material properties in terms of a so-called geometric mean isotropic (GMI) material. Closed-form expressions for the buckling stress in terms of cylinder geometry and orthotropic material properties are presented, the particular closed form depending on the specific character of the orthotropic material relative to the GMI material. With the formulation, the specific character of the buckling deformations - e.g., axisymmetric or nonaxisymmetric, the number of axial and circumferential waves - can be established. By using the maximum radius of curvature of an elliptical cross section in this formulation, the analysis is used to demonstrate the detrimental effects of an elliptical cross section on axial buckling capacity when compared to a circular cross section with the same circumference. Using the circumferentially-varying radius of curvature of an elliptical cross section, the analysis is then further used as the basis for developing two methods for improving the axial buckling capacity of elliptical cylinders. The first approach involves varying the wall thickness of an isotropic elliptical cylinder with circumferential position. Uniformly stable elliptical cross sections which preserve the same critical stress, critical load, or volume of an axially loaded circular cylinder of the same circumference are designed with the formulation. The second approach involves maintaining a uniform wall thickness but varying the orthotropic material properties with circumferential position. This approach is applied to a cylindrical lattice structure where it is assumed that the ribs are dense enough to be able to describe the lattice structure by means of an equivalent homogenized material. The orthotropic properties of the homogenized material are varied by varying the lattice rib angle with circumferential position. Considerable recovery of the axial buckling capacity of the variable-rib-angle design elliptical cylinder compared to the same cylinder constructed in isogrid fashion is demonstrated. In fact, recovery relative to an isogrid circular cylinder of the same circumference is demonstrated. For both approaches confirming finite element models are used to verify the findings. The two different approaches are compared, and finally the two approaches are recognized as special cases of a more general design philosophy. / Ph. D.
2

High Precision Thermal Morphing of the Smart Anisogrid Structure for Space-Based Applications

Phoenix, Austin Allen 18 October 2016 (has links)
To meet the requirements for the next generation of space missions, a paradigm shift is required from current structures that are static, heavy and stiff, to innovative structures that are adaptive, lightweight, versatile, and intelligent. This work proposes the use of a novel morphing structure, the thermally actuated anisogrid morphing boom, to meet the design requirements by making the primary structure actively adapt to the on-orbit environment. The proposed concept achieves the morphing capability by applying local and global thermal gradients and using the resulting thermal strains to introduce a 6 Degree of Freedom (DOF) morphing control. To address the key technical challenges associated with implementing this concept, the work is broken into four sections. First, the capability to develop and reduce large dynamic models using the Data Based Loewner-SVD method is demonstrated. This reduction method provides the computationally efficient dynamic models required for evaluation of the concept and the assessment of a vast number of loading cases. Secondly, a sensitivity analysis based parameter ranking methodology is developed to define parameter importance. A five parameter model correlation effort is used to demonstrate the ability to simplify complex coupled problems. By reducing the parameters to only the most critical, the resulting morphing optimization computation and engineering time is greatly reduced. The third piece builds the foundation for the thermal morphing anisogrid structure by describing the concept, defining the modeling assumptions, evaluating the design space, and building the performance metrics. The final piece takes the parameter ranking methodology, developed in part two, and the modeling capability of part three, and performs a trust-region optimization to define optimal morphing geometric configuration. The resulting geometry, optimized for minimum morphing capability, is evaluated to determine the morphing workspace, the frequency response capability, and the minimum and maximum morphing capability in 6 DOF. This work has demonstrated the potential and provided the technical tools required to model and optimize this novel smart structural concept for a variety of applications. / Ph. D.

Page generated in 0.0339 seconds