1 |
A Calorimetric Investigation of Recrystallization in Al-Mg-Si-Cu AlloysKhatwa, Mohamed Abou 06 1900 (has links)
<p> The recrystallization behavior of three Al-Mg-Si-Cu alloys with varying iron and manganese additions was studied by differential power scanning calorimetry under nonisothermal annealing conditions. The influence of cold deformation on the precipitation sequence and its interaction with recrystallization was also investigated. The DSC experiments were complemented by hardness measurements and microstructural studies by optical and electron microscopy. The DSC signals, after optimization of the baseline, were used for the calculation of the kinetic parameters of the recrystallization process. Two different modeling approaches based on global JMAK kinetics were implemented. The first approach utilizes the classical isothermal JMAK expression directly, while the second approach introduces a path variable related to the thermal history of the material in the JMAK description. Model-independent estimates of the activation energy were also evaluated using the Flynn-Wall-Ozawa integral isoconversion method. </p> <p> The results show that the initial stages of recrystallization are not affected by the preceding precipitation processes and recrystallization always follows the precipitation of the Q' phase. However, during recrystallization enhanced coarsening of the Q' phase
takes place leading to its transformation to the more stable Q phase. The Q phase exerts a Zener pinning pressures on the migrating boundaries preventing the formation of an equilibrium grain structure. Moreover, for high Fe and Mn additions, discontinuous precipitation of Mg2Si overlaps with the end of recrystallization and exerts an additional pinning pressure on the boundaries. Varying the Fe and Mn content significantly affects the recrystallization kinetics. PSN is promoted in alloys with the higher Fe and Mn content and the recrystallization temperature shifts to lower values. The modeling results show that the recrystallization process conforms to the classical JMAK type behavior. The course of the reaction was reproduced successfully by the path variable approach and the evaluated activation energies were in good agreement with the isoconversional model-independent estimates. However, when the classical JMAK expression was applied directly to non-isothermal measurements, a dependency of the recrystallization process on thermal history was observed. </p> / Thesis / Doctor of Philosophy (PhD)
|
2 |
Understanding the Role of Lattice Defects and Metal Composition Ratio on the Photochemistry of CuFeO<sub>2</sub> toward Solar Energy ConversionFugate, Elizabeth Anne 11 September 2020 (has links)
No description available.
|
Page generated in 0.1424 seconds