1 |
Relating the Annihilation Number and the Total Domination Number of a TreeDesormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 01 February 2013 (has links)
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we investigate relationships between the annihilation number and the total domination number of a graph. Let T be a tree of order n<2. We show that γt(T)≤a(T)+1, and we characterize the extremal trees achieving equality in this bound.
|
2 |
Relating the Annihilation Number and the Total Domination Number of a TreeDesormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 01 February 2013 (has links)
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set in G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we investigate relationships between the annihilation number and the total domination number of a graph. Let T be a tree of order n<2. We show that γt(T)≤a(T)+1, and we characterize the extremal trees achieving equality in this bound.
|
Page generated in 0.1054 seconds