• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Credit Card Transaction Fraud Detection Using Neural Network Classifiers / Detektering av bedrägliga korttransaktioner m.h.a neurala nätverk

Nazeriha, Ehsan January 2023 (has links)
With increasing usage of credit card payments, credit card fraud has also been increasing. Therefore a fast and accurate fraud detection system is vital for the banks. To solve the problem of fraud detection, different machine learning classifiers have been designed and trained on a credit card transaction dataset. However, the dataset is heavily imbalanced which poses a problem for the performance of the algorithms. To resolve this issue, the generative methods Generative Adversarial Network (GAN), Variational Autoencoders (VAE) and Synthetic Minority Oversampling Technique (SMOTE) have been used to generate synthetic samples for the minority class in order to achieve a more balanced dataset. The main purpose of this study is to evaluate the generative methods and investigate the impact of their generated minority samples on the classifiers. The results from this study indicated that GAN does not outperform the other classifiers as the generated samples from VAE were most effective in three out of five classifiers. Also the validation and histogram of the generated samples indicate that the VAE samples have captured the distribution of the data better than SMOTE and GAN. A suggestion to improve on this work is to perform data engineering on the dataset. For instance, using correlation analysis for the features and analysing which features have the greatest impact on the classification and subsequently dropping the less important features and train the generative methods and classifiers with the trimmed down samples. / Med ökande användning av kreditkort som betalningsmetod i världen, har även kreditkort bedrägeri ökat. Därför finns det behov av ett snabbt och tillförligt system för att upptäcka bedrägliga transkationer. För att lösa problemet med att detektera kreditkort bedrägerier, har olika maskininlärnings klassifiseringsmetoder designats och tränats med ett dataset som innehåller kreditkortstransaktioner. Dock är dessa dataset väldigt obalanserade och innehåller mest normala transaktioner, vilket är problematiskt för systemets noggranhet vid klassificering. Därför har generativa metoderna Generative adversarial networks, Variational autoencoder och Synthetic minority oversampling technique använs för att skapa syntetisk data av minoritetsklassen för att balansera datasetet och uppnå bättre noggranhet. Det centrala målet med denna studie var därmed att evaluera dessa generativa metoder och invetigera påverkan av de syntetiska datapunkterna på klassifiseringsmetoderna. Resultatet av denna studie visade att den generativa metoden generative adversarial networks inte överträffade de andra generativa metoderna då syntetisk data från variational autoencoders var mest effektiv i tre av de fem klassifisieringsmetoderna som testades i denna studie. Dessutom visar valideringsmetoden att variational autoencoder lyckades bäst med att lära sig distributionen av orginal datat bättre än de andra generativa metoderna. Ett förslag för vidare utveckling av denna studie är att jobba med data behandling på datasetet innan datasetet används för träning av algoritmerna. Till exempel kan man använda korrelationsanalys för att analysera vilka features i datasetet har störst påverkan på klassificeringen och därmed radera de minst viktiga och sedan träna algortimerna med data som innehåller färre features.
2

Fraud Detection on Unlabeled Data with Unsupervised Machine Learning / Bedrägeridetektering på omärkt data med oövervakad maskininlärning

Renström, Martin, Holmsten, Timothy January 2018 (has links)
A common problem in systems handling user interaction was the risk for fraudulent behaviour. As an example, in a system with credit card transactions it could have been a person using a another user's account for purchases, or in a system with advertisment it could be bots clicking on ads. These malicious attacks were often disguised as normal interactions and could be difficult to detect. It was especially challenging when working with datasets that did not contain so called labels, which showed if the data point was fraudulent or not. This meant that there were no data that had previously been classified as fraud, which in turn made it difficult to develop an algorithm that could distinguish between normal and fraudulent behavior. In this thesis, the area of anomaly detection was explored with the intent of detecting fraudulent behavior without labeled data. Three neural network based prototypes were developed in this study. All three prototypes were some sort of variation of autoencoders. The first prototype which served as a baseline was a simple three layer autoencoder, the second prototype was a novel autoencoder which was called stacked autoencoder, the third prototype was a variational autoencoder. The prototypes were then trained and evaluated on two different datasets which both contained non fraudulent and fraudulent data. In this study it was found that the proposed stacked autoencoder architecture achieved better performance scores in recall, accuracy and NPV in the tests that were designed to simulate a real world scenario. / Ett vanligt problem med användares interaktioner i ett system var risken för bedrägeri. För ett system som hanterarade dataset med kreditkortstransaktioner så kunde ett exempel vara att en person använde en annans identitet för kortköp, eller i system som hanterade reklam så skulle det kunna ha varit en automatiserad mjukvara som simulerade interaktioner. Dessa attacker var ofta maskerade som normala interaktioner och kunde därmed vara svåra att upptäcka. Inom dataset som inte har korrekt märkt data så skulle det vara speciellt svårt att utveckla en algoritm som kan skilja på om interaktionen var avvikande eller inte. I denna avhandling så utforskas ämnet att upptäcka anomalier i dataset utan specifik data som tyder på att det var bedrägeri. Tre prototyper av neurala nätverk användes i denna studie som tränades och utvärderades på två dataset som innehöll både data som sade att det var bedrägeri och inte bedrägeri. Den första prototypen som fungerade som en bas var en simpel autoencoder med tre lager, den andra prototypen var en ny autoencoder som har fått namnet staplad autoencoder och den tredje prototypen var en variationell autoencoder. För denna studie så gav den föreslagna staplade autoencodern bäst resultat för återkallelse, noggrannhet och NPV i de test som var designade att efterlikna ett verkligt scenario.

Page generated in 0.1034 seconds