• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nuclear effects in high-energy proton-nucleus collisions : transverse momentum broadening of energetic parton systems and soft anomalous dimension matrices / Effets nucléaires dans les collisions proton-noyau à haute énergie : élargissement de l’impulsion transverse des systèmes de partons énergétiques et matrices de dimension anormale

Cougoulic, Florian 21 September 2018 (has links)
Dans le Modèle Standard de la physique des particules, la théorie de l’interaction forte, la chromodynamique quantique (QCD), est une théorie de jauge de groupe de symétrie SU (Nc) par rapport au nombre quantique de couleur. QCD obéit à la propriété de liberté asymptotique, permettant le calcul d’observables physiques à haute énergie en utilisant la QCD perturbative (pQCD). Cette thèse traite de la description en pQCD des taux de production de hadrons dans les collisions hadroniques à haute énergie, en vue d’applications à la phénoménologie des collisions proton-noyau et noyau-noyau dans les collisionneurs de hadrons (RHIC, LHC), où des effets nucléaires (shadowing, perte d’énergie partonique, élargissement de l’impulsion transverse) entrent en jeu. Dans une première partie, j’étudie l’élargissement de l’impulsion transverse d’un système de partons énergétiques traversant un noyau, en mettant l’accent sur la structure de couleur du processus. Un cadre théorique basé sur le formalisme des dipôles est utilisé, et une équation cinétique est dérivée pour la distribution en impulsion transverse de la paire de partons, en demandant que cette paire soit dans un état de couleur donné (représentation irréductible de SU (Nc)) à la fois dans l’état initial et dans l’état final. La structure de couleur est codée dans un opérateur d’évolution de couleur, qui est obtenu pour tout type de paire de partons. Pour une paire compacte de petite taille, la dérivation donne une interprétation physique claire du processus d’élargissement de l’impulsion transverse. Dans une deuxième partie, je discute la matrice de dimension anormale Q, qui est formellement analogue à l’opérateur d’évolution précédent, et qui apparaît lors de l’ étude du rayonnement de gluons mous associé à une diffusion partonique dure 2 −> 2. Il a été remarqué que la matrice Q associée à gg −> gg a une symétrie surprenante (reliant les degrés de liberté externe et interne). J’ai développé des outils pour dériver les matrices Q associées à des diffusions 2 −> 2 impliquant des partons généralisés, afin d’explorer si la symétrie observée pour gg −> gg est fortuite ou non. / In the Standard Model of particle physics,the theory of the strong interaction, Quantum Chromodynamics (QCD), is a gauge theory of symmetry group SU (Nc) with respect to the color quantum number. QCD obeys the property of asymptotic freedom, allowing the computation of high-energy physical observables using perturbative QCD (pQCD). This thesis deals with the pQCD description of hadron production rates in high-energy hadronic collisions, in view of applications to the phenomenology of proton-nucleus and nucleus-nucleus collisions at hadron colliders (RHIC,LHC), where so-called nuclear effects (shadowing, parton energy loss, transverse momentum broadening) come into play. In a first part, I study the transverse broadening of an energetic parton system crossing a nucleus, putting emphasis on the color structure of the process. A theoretical setup based on the dipole formalism is used,and a kinetic equation is derived for the parton pair transverse momentum distribution, requiring the parton pair to be in a given color state (SU (Nc) irreducible representation) both in the initial and final state. The color structure is encoded in a color evolution operator, which is obtained for any type of parton pair. For a small-size compact pair, the derivation yields a transparent physical interpretation of the pair transverse broadening process. In a second part, I discuss the soft anomalous dimension matrix Q, which is formally analogous to the previous evolution operator, and which appears when studying soft gluon radiation associated to 2 −> 2 hard parton scattering. It has been noticed that the Q-matrix associated to gg −> gg has a surprising symmetry (relating external and internal degrees of freedom). I developed tools to derive the Q-matrices associated to2 −> 2 scatterings involving generalized partons, in order to explore if the symmetry observed for gg −> gg is fortuitous or not.
2

Calculation of webs in non-Abelian gauge theories using unitarity cuts

Waelkens, Andries Jozef Nicolaas January 2017 (has links)
When calculating scattering processes in theories involving massless gauge bosons, such as gluons in Quantum Chromodynamics (QCD), one encounters infrared (IR), or soft, divergences. To obtain precise predictions, it is important to have exact expressions for these IR divergences, which are present in any on-shell scattering amplitude. Due to their long wavelength, soft gluons factorise with respect to short-distance, or hard, interactions and can be captured by correlators of semi-infinite Wilson lines. The latter obey a renormalisation group equation, which gives rise to exponentiation. The exponent can be represented diagrammatically in terms of weighted sums of Feynman diagrams, called webs. A web with L external legs, each with ni gluon attachments, is denoted (n1; n2; : : : ; nL). In this way all soft gluon interactions can be described by a soft anomalous dimension. It is currently known at three loops with lightlike kinematics, and at two loops with general kinematics. Our work is a step towards a three-loop result in general kinematics. In recent years, much progress has been made in understanding the general physical properties of scattering amplitudes and in exploiting these properties to calculate specific amplitudes. At the same time, we have discovered a lot of structure underpinning the space of multiple polylogarithms, the functions in terms of which most known amplitudes can be written. General properties include analyticity, implying that scattering amplitudes are analytic functions except on certain branch cuts, and unitarity, or conservation of probability. These two properties are both exploited by unitarity cuts. Unitarity cuts provide a diagrammatic way of calculating the discontinuities of a Feynman diagram across its branch cuts, which is often simpler than calculating the diagram itself. From this discontinuity, the original function can be reconstructed by performing a dispersive integral. In this work, we extend the formalism of unitarity cuts to incorporate diagrams involving Wilson-line propagators, where the inverse propagator is linear in the loop momenta, rather than the quadratic case which has been studied before. To exploit this for the calculation of the soft anomalous dimension, we first found a suitable momentum-space IR regulator and corresponding prescription, and then derived the appropriate largest time equation (LTE). We find that, as in the case of the scalar diagrams, most terms contributing to the LTE turn out to be zero, albeit for different reasons. This simplifies calculations considerably. This formalism is then applied to the calculation of webs with non-lightlike Wilson lines. As a test, we first looked at webs that have been previously studied using other methods. It emerges that, when using the correct variables, the dispersive integrals one encounters here are trivial, illustrating why unitarity cuts are a particularly useful tool for the calculation of webs. We observe that our technique is especially efficient when looking at diagrams involving three-gluon vertices, such as the (1; 1; 1) web and the Y diagram between two lines. We then focus on three-loop diagrams connecting three or four external non-lightlike lines and involving a three-gluon vertex. We calculate the previously unknown three-loop three-leg (1; 1; 3) web in general kinematics. We obtain a result which agrees with the recently calculated lightlike limit. We also develop a technique to test our results numerically using the computer program SecDec, and we find agreement with our analytical result. The result for the (1; 1; 3) web can then be exploited to gain insight into the more complicated three-loop four-leg (1; 1; 1; 2) web. Indeed, the (1; 1; 1; 2) web reduces to the (1; 1; 3) web in a certain collinear limit. We propose an ansatz for the (1; 1; 1; 2) web in general kinematics, based on a conjectured basis of multiple polylogarithms. The result for the (1; 1; 3) web, together with the known result for the lightlike limit of the (1; 1; 1; 2) web, imposes strong constraints on the ansatz. Using these constraints, we manage to fix all but four coefficients in the ansatz. We fit the remaining coefficients numerically, but find that the quality of the fit is not good. We find possible explanations for this poor quality. This calculation is still a work in progress. Our results provide a major step towards the full calculation of the three-loop soft anomalous dimension for non-lightlike Wilson lines. We calculated new results for three-loop webs, and also deepened the understanding of webs in general. We confirm a conjecture about the functional dependence of the soft anomalous dimension on the cusp angles. We also confirm earlier findings about the symbol alphabet of the relevant functions. This confirms the remarkable simplicity found earlier in the expressions for the soft anomalous dimension.
3

Conformal field theory at large N

Flodgren, Nadia January 2019 (has links)
The conformal bootstrap method is a non-perturbative method that uses the symmetry in a conformal field theory to constrain and solve for the observables in the theory. We consider a conformal field theory with the symmetry group SU(N) and four general scalar fields as the only low dimensional operators. The four-point correlation function of a quartic interaction of four general scalar fields in a conformal field theory can be written as a sum over primary operators. In order to study the four-point correlator a large-N expansion is made, where N comes from the symmetry group SU(N). Using the conformal bootstrap method the anomalous dimension of the primary operators in the four-point correlator is calculated. Using the AdS/CFT correspondence the anomalous dimension of the primary operators is also calculated using Witten diagrams. / Konform fältteori är en kvantfältteori med konform symmetri. Konform symmetri är en symmetri som bevarar vinklar och lokalt ser ut som en kombination av en rotation och en förändring i skala. En metod för att beräkna de observerbara kvantiteterna i en konform fältteori är metoden "conformal boostrap". Denna metod går ut på att använda symmetrin i en konform fältteori för att begränsa och beräkna värdet på de observerbara kvantiteterna i teorin.En av de observerbar kvantiteterna i en fältteori är en korrelationsfunktion. Korrelationsfunktioner beskriver interaktionerna mellan partiklarna i en fältteori.  I detta arbete studerar vi en interaktion mellan fyra skalärfält genom att studera fyra-punkts korrelationsfunktionen för denna interaktion. Metoden vi använder är "conformal bootstrap" men vi testar också om AdS/CFT dualiteten håller för våra beräkningar. AdS/CFT dualiteten är en ekvivalens av två olika teorier, en strängteori i ett (d+1)-dimensionellt anti-de Sitter (AdS) rum och en konform fältteori (CFT) i den d-dimensionella gränsen av anti-de Sitter rummet. Enligt denna dualitet kan en observerbar kvantitet beräknas från båda dessa två teorier och ge samma resultat. Teorin vi studerar har symmetrigrupp SU(N) och vi arbetar i dimension två. Vi arbetar också med att N, matrisrangen i teorin, är stort då detta är den gräns där AdS/CFT dualiteten gäller. Enligt konform fältteori så kan en fyra-punkts korrelationsfunktion av fyra skalärer beskrivas som en summa över vad som kallas primära fält. Genom att använda "conformal bootstrap" metoden beräknas den anormala dimensionen, vilket är en korrektion av första icke-triviala ordning till dimensionen, av dessa primära fält. Samma kvantitet beräknas också från strängteorisidan av AdS/CFT dualiteten genom användandet av så kallade Witten diagram. Resultatet från båda sidor av dualiteten visas stämma överens.

Page generated in 0.0929 seconds