• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antenna effects on indoor wireless channels and a deterministic wide-band propagation model for in-building personal communication systems /

Ho, Chung-Man Peter, January 1993 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 187-194). Also available via the Internet.
2

Wideband meandering probe-fed patch antenna /

Lai, Hau Wah. January 2005 (has links) (PDF)
Thesis (Ph. D.)--City University of Hong Kong, 2005. / "Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves 144-153).
3

Design and analysis of proximity coupling feeds for multi-layer patch antennas: T-square feed and its two variations. / Design & analysis of proximity coupling feeds for multi-layer patch antennas

January 2005 (has links)
Lee Wai Ki. / Thesis submitted in: May 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 62-66). / Abstracts in English and Chinese. / Chapter Chapter 1: --- Introduction --- p.8 / Chapter 1.1 --- Motivation --- p.8 / Chapter 1.2 --- Organization of the thesis --- p.10 / Chapter Chapter 2: --- Background Technology --- p.12 / Chapter 2.1 --- Introduction: FUZZY EM CAD formula for impedance of the edge of the patch antenna --- p.12 / Chapter 2.2 --- Fringe field extension of the patch: --- p.12 / Chapter 2.2.1 --- Applying the root of area capacitance formula --- p.12 / Chapter 2.2.2 --- Defining microstrip parallel plate capacitor with infinite substrate --- p.13 / Chapter 2.2.3 --- The parallel plate capacitor formula --- p.14 / Chapter 2.2.4 --- DC fringe field leading to the patch extension --- p.15 / Chapter 2.3 --- Cavity model of the patch --- p.16 / Chapter 2.3.1 --- Cavity model analysis on its internal field --- p.16 / Chapter 2.3.2 --- Input impedance derived from cavity model --- p.19 / Chapter 2.3.3 --- Quality factor of patch antenna --- p.19 / Chapter 2.4 --- Fringe extension applied to cavity model in RF --- p.23 / Chapter Chapter 3: --- Simple one Port wide band multi-layer patch Antenna --- p.24 / Chapter 3.1 --- Introduction --- p.24 / Chapter 3.2 --- Antenna design --- p.25 / Chapter 3.3 --- Measured results --- p.26 / Chapter 3.4 --- Antenna Analysis --- p.29 / Chapter 3.5 --- Conclusion --- p.30 / Chapter Chapter 4: --- Design synthesis of patch antennas of the T-square Probe --- p.31 / Chapter 4.1 --- Introduction --- p.31 / Chapter 4.2 --- The physics interpretation --- p.32 / Chapter 4.3 --- The Smith chart movement by the T-square feed on the patch --- p.33 / Chapter 4.4 --- Conclusion --- p.35 / Chapter Chapter 5: --- Design synthesis of the wideband tuning-fork-shaped feeding for patch antenna --- p.36 / Chapter 5.1 --- Introduction --- p.36 / Chapter 5.2 --- Antenna design --- p.36 / Chapter 5.3 --- The Smith chart movements of the tuning-fork shaped feeding on the patch --- p.37 / Chapter 5.4 --- Conclusion --- p.41 / Chapter Chapter 6: --- "Fork on H-slot feed of multilayer microstrip antenna for wideband, high isolation and low cross polarization" --- p.42 / Chapter 6.1 --- Introduction --- p.42 / Chapter 6.2 --- Antenna analysis - Isolation improvement considerations --- p.44 / Chapter 6.3 --- Antenna design and measured results --- p.46 / Chapter 6.3.1 --- The simulated return loss and current distribution s in various structure of the two port. --- p.47 / Chapter 6.3.2. --- The hardware and the comparison of results --- p.50 / Chapter 6.3.3. --- The simulated properties of the radiation patterns and cross-polarizations --- p.52 / Chapter 6.3.4. --- The comparison of radiation patterns between simulation and hardware --- p.56 / Chapter 6.4 --- Further improvements --- p.58 / Chapter 6.5 --- Conclusion --- p.59 / Chapter Chapter 7: --- Conclusions --- p.60 / Reference --- p.62 / List of Publication --- p.66
4

Microstrip antennae with various substrate thickness / by Mehmet Kara.

Kara, Mehmet January 1996 (has links)
Includes bibliographies. / xix, [252] leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This research addresses probe fed classical rectangular microstrip antenna elements and arrays, that are fabricated on substrate materials with various thicknesses and relative permittivities. Formulae are developed for calculating the patch dimensions, the resonant input resistance, the resonant frequency, the bandwidth and the radiation patterns of elements, as well as the mutual coupling coefficients of arrays. / Thesis (Ph.D.)--University of Adelaide, Dept. of Electrical and Electronic Engineering, 1996
5

Loop feed meander-line antenna RFID tag desing for UHF band

Ma, Y., Abd-Alhameed, Raed, Zhou, Dawei, See, Chan H., Abidin, Z.Z., Jin, C., Peng, B. January 2014 (has links)
No / A loop feed meander-line Antenna (LFMLA) RFID tag on a relatively low dielectric constant substrate operates on the European UHF band 865-868 MHz is presented. The tag modeling is analyzed using two different electromagnetic simulator HFSS and CST. A prototype tag antenna is constructed and measured for validation. The input impedance of the proposed antenna is verified against the simulated data results, the measured and simulated results are found to be in good agreement. The compact size tag antenna shows excellent impedance matching to the typical input impedance of a RFID integrated circuit chip and a significant improvement in reading range up to 5 meters.
6

Antenna effects on indoor wireless channels and a deterministic wide-band propagation model for in-building personal communication systems

Ho, Chung-Man Peter 10 January 2009 (has links)
While the application of antenna diversity in a narrow band communication system is well understood, little research has been done on antenna effects in wide-band channels. Research has shown that circular polarization (CP) is more robust in combating multipath than linear polarization in line-of-sight channels. One objective of this thesis is to study the effects of antenna polarization and antenna pattern on multipath delay spread and path loss in indoor obstructed (OBS) wireless channels. A wide-band experiment was performed in a two-floored modern office building at 2.4SGHz in August 1991. Some preliminary results are as follows. Circular polarization cannot reduce delay spread in OBS channels and CP signals are more vulnerable to depolarization in OBS channels. Our results show that vertically polarized (VP) directional antennas at both the transmitter and the receiver can give better delay spread and path loss results than other antenna combinations. The performance of VP directional antennas are found to be sensitive to the alignment of the antennas, and the performance gain over omnidirectional antennas degrades as shadowing effects increase. In the second half of the thesis, a deterministic wide-band propagation model that can predict channel impulse responses inside buildings is proposed and implemented. The three dimensional image-based propagation model includes effects of antenna pattern, antenna polarization, geometry of the building, and building materials. Comparisons between measured and predicted power delay profiles are given in Chapter Seven. Preliminary results show that the worst case path loss error is IOdB, and the standard deviation of path loss error is 4.6dB. For most cases, predicted rms delay spread values are 20ns within the measured values. Possible prediction errors are due to unmodeled furniture inside the offices and limitations of Geometrical Optics (GO) assumptions. The algorithm is shown to be more efficient than brute force ray tracing algorithm if the number of objects are on the order of a few hundred. Acceleration techniques for the algorithm are also discussed in the thesis. / Master of Science
7

High performance on-chip array antenna based on metasurface feeding structure for terahertz integrated circuits

Alibakhshikenari, M., Virdee, B.S., See, C.H., Abd-Alhameed, Raed, Limiti, E. 06 1900 (has links)
Yes / In this letter a novel on-chip array antenna is investigated which is based on CMOS 20μm Silicon technology for operation over 0.6-0.65 THz. The proposed array structure is constructed on three layers composed of Silicon-Ground-Silicon layers. Two antennas are implemented on the top layer, where each antenna is constituted from three sub-antennas. The sub-antennas are constructed from interconnected dual-rings. Also, the sub-antennas are interconnected to each other. This approach enhances the aperture of the array. Surface waves and substrate losses in the structure are suppressed with metallic via-holes implemented between the radiation elements. To excite the structure, a novel feeding mechanism is used comprising open-circuited microstrip lines that couple electromagnetic energy from the bottom layer to the antennas on the top-layer through metasurface slot-lines in the middle ground-plane layer. The results show the proposed on-chip antenna array has an average radiation gain, efficiency, and isolation of 7.62 dBi, 32.67%, and -30 dB, respectively. / H2020-MSCA-ITN-2016 SECRET-722424 and the financial support from the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E0/22936/1
8

An Approach for Calculating the Limiting Bandwidth-Reflection Coefficient Product for Microstrip Patch Antennas.

Ghorbani, A., Abd-Alhameed, Raed, McEwan, Neil J., Zhou, Dawei January 2006 (has links)
No / The bandwidth of a microstrip patch antenna is expressed in terms of minimum achievable reflection coefficient using an equivalent circuit and the Bode-Fano theory. The bandwidth-reflection coefficient product is found to be proportional to antenna height and largely independent of feed probe position, for small bandwidths. The product can be computed directly from a numerical evaluation of the first-order Bode-Fano integral. Curves are presented showing how the product becomes limited by the feed probe inductance at very large bandwidths. It is concluded that this effect is unlikely to be a limit on the potential bandwidth of a practical patch antenna. If as a minimal correction the feed inductance is tuned out, the realized bandwidth with low order matching or optimal over-coupling shows the expected relationship to the theoretical limit.
9

Estudo numÃrico/experimental de antena ressoadora dielÃtrica circularmente polarizada com alimentaÃÃo por sonda Ãnica / Numerical and experimental study of a circularly polarized dielectric resonator antenna fed by single probe

Josà Wagner de Oliveira Bezerra 05 June 2012 (has links)
nÃo hà / A expansÃo das redes de telecomunicaÃÃes sem fio e o fenÃmeno da convergÃncia digital trazem a inerente necessidade da pesquisa de novos componentes que assegurem a sustentabilidade e a evoluÃÃo dos sistemas. Novos tipos de antenas, menores e mais eficientes, sÃo exigidas à medida que novos dispositivos vÃo surgindo. Neste contexto, as antenas ressoadoras dielÃtricas, construÃdas com novos materiais, aparecem como excelente opÃÃo para substituir as antenas metÃlicas tradicionais. Este trabalho apresenta uma proposta de antena ressoadora dielÃtrica circularmente polarizada, operando na frequÃncia central de 2,25 GHz, na qual um esquema de alimentaÃÃo por sonda Ãnica à empregado para excitar dois modos ressonantes em um dielÃtrico em forma de quarto de cilindro. Este leiaute permite a ativaÃÃo de modos de baixa ordem, com distribuiÃÃo ortogonal dos campos eletromagnÃticos, ressoando em frequÃncias prÃximas com uma diferenÃa de fase de 90Â. SÃo introduzidos conceitos da teoria eletromagnÃtica envolvendo cavidades ressonantes e caracterÃsticas dos materiais cerÃmicos que compÃem o dielÃtrico. AlÃm disso, os processos de modelagem por computador e de construÃÃo de um protÃtipo sÃo explicados. Os resultados sÃo discutidos comparativamente entre o modelo computacional e as medidas experimentais executadas em laboratÃrio. O estudo demonstra uma boa concordÃncia entre os resultados simulados e os experimentais e evidencia a viabilidade da antena para aplicaÃÃes que necessitem de polarizaÃÃo circular na regiÃo do espectro de frequÃncias prÃximas a 2,25 GHz. / The expansion of wireless telecommunications networks and the phenomenon of digital convergence bring the inherent need for research of new components to ensure the sustainability and evolution of the systems. New types of antenna, smaller and more efficient, are required as new devices emerge. In this context, the dielectric resonator antennas, built with new materials, appear as an excellent option to replace the conventional metallic antennas. This work presents a proposal for a circularly polarized dielectric resonator antenna to operate at the center frequency of 2.25 GHz in which a single probe feeding scheme is used to excite two resonant modes in a quarter-cylinder-shaped dielectric. This layout allows the activation of low-order modes with orthogonal distribution of electromagnetic fields, resonating at near frequencies with a 90 phase difference. The concepts of electromagnetic theory related to resonant cavities and the characteristics of dielectric ceramic materials are introduced. Furthermore, the processes of computer modeling and constructing of a prototype are explained. The results are discussed by comparison between the computational model and experimental measurements performed in the laboratory. The study shows a good agreement between the simulated and experimental results and demonstrates the feasibility of the antenna for applications requiring circular polarization for operating at the region of the frequency spectrum close to 2.25 GHz.
10

Analysis and Design of a Multifunctional Spiral Antenna

Chen, Teng-Kai 2012 August 1900 (has links)
The Archimedean spiral antenna is well-known for its broadband characteristics with circular polarization and has been investigated for several decades. Since their development in the late 1950's, establishing an analytical expression for the characteristics of spiral antenna has remained somewhat elusive. This has been studied qualitatively and evaluated using numerical and experimental techniques with some success, but many of these methods are not convenient in the design process since they do not impart any physical insight into the effect each design parameter has on the overall operation of the spiral antenna. This work examines the operation of spiral antennas and obtains a closed-form analytical solution by conformal mapping and transmission line model with high precision in a wide frequency band. Based on the analysis of spiral antenna, we propose two novel design processes for the stripline-fed Archimedean spiral antenna. This includes a stripline feed network integrated into one of the spiral arms and a broadband tapered impedance transformer that is conformal to the spiral topology for impedance matching the nominally-high input impedance of the spiral. A Dyson-style balun located at the center facilitates the transition between guided stripline and radiating spiral modes. Measured and simulated results for a probe-fed design operating from 2 GHz to over 20 GHz are in excellent agreements to illustrate the synthesis and performance of a demonstration antenna. The research in this work also provides the possibility to achieve conformal integration and planar structural multi-functionality for an Unmanned Air Vehicle (UAV) with band coverage across HF, UHF, and VHF. The proposed conformal mapping analysis can also be applied on periodic coplanar waveguides for integrated circuit applications.

Page generated in 0.0454 seconds