• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation of Antenna Switching Diversity and Its Improvements over Single-Input Single-Output System

Setya, Oktavius Felix 28 September 2009 (has links)
This dissertation study the effectiveness of antenna switching diversity for orthogonal frequency division multiplexing (OFDM) systems such as in IEEE 802.11. One of the ways to exploit the multiple antenna configurations is to use antenna switching diversity. Antenna switching diversity is used in wireless systems to combat the effect of fading, as we can combine multiple independent copies of the same signal into a total signal with high quality. In this work, we implement and compare the performance of two systems, antenna switching diversity system and single-input single-output (SISO) system. We firstly study the performance of the antenna switching diversity system as we increases the number of antennas compared to the performance of signal-to-noise ratio (SNR) or gain of the system. The performance of antenna switching diversity is studied on several difference configurations such as receive diversity where there are multiple receive antennas, and transmit diversity where the there are multiple transmit antennas. The study is performed on eight (8) antenna switching, on either the transmit or receive side. The implementation of antenna switching diversity system shows that there are definite improvement on signal-to-noise ratio (gain) value compared to single-input single-output system signal-to-noise ratio (gain).
2

Implementation of Antenna Switching Diversity and Its Improvements over Single-Input Single-Output System

Setya, Oktavius Felix 28 September 2009 (has links)
This dissertation study the effectiveness of antenna switching diversity for orthogonal frequency division multiplexing (OFDM) systems such as in IEEE 802.11. One of the ways to exploit the multiple antenna configurations is to use antenna switching diversity. Antenna switching diversity is used in wireless systems to combat the effect of fading, as we can combine multiple independent copies of the same signal into a total signal with high quality. In this work, we implement and compare the performance of two systems, antenna switching diversity system and single-input single-output (SISO) system. We firstly study the performance of the antenna switching diversity system as we increases the number of antennas compared to the performance of signal-to-noise ratio (SNR) or gain of the system. The performance of antenna switching diversity is studied on several difference configurations such as receive diversity where there are multiple receive antennas, and transmit diversity where the there are multiple transmit antennas. The study is performed on eight (8) antenna switching, on either the transmit or receive side. The implementation of antenna switching diversity system shows that there are definite improvement on signal-to-noise ratio (gain) value compared to single-input single-output system signal-to-noise ratio (gain).
3

Mmse Based Iterative Turbo Equalization For Antenna Switching Systems

Yildirim, Recep Ali 01 September 2010 (has links) (PDF)
In this thesis, we study the performance of an antenna switching (AS) system in comparison to an Alamouti coded system. We analyze the outage probabilities and propose minimum mean-squared error based iterative equalizers for both systems. We see from the outage probability analysis of both systems that the AS system may achieve the same diversity order of the Alamouti coded scheme contingent on the transmission rate and constellation size. In the proposed receiver, MMSE equalization and channel decoding are jointly carried out in an iterative fashion. We use both hard and soft decision channel decoders in our simulations. It is observed that the Alamouti based scheme performs better when the channel state information is perfect. The Alamouti scheme also performs better than the AS scheme when the channel state information is imperfect in hard decision channel decoder case and a random interleaver is used. On the other hand, if a random interleaver is not used, AS scheme performs remarkably better than the Alamouti scheme in hard decision channel decoder case. In a soft decision channel decoder case, when the channel state information is imperfect, the AS scheme performs approximately a 2 dB better than the Alamouti scheme. Moreover, there is approximately a 3 dB performance gain if a soft decision channel decoder is used instead of hard decision.

Page generated in 0.0576 seconds