• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Molecular Physiological Evolution: Steroid Hormone Receptors and Antifreeze Proteins

Cziko, Paul 14 January 2015 (has links)
For my dissertation research I explored the diversity and functional evolution of steroid hormone receptors (SRs) in animals and the physiological implications of the evolution of antifreeze proteins in Antarctic notothenioid fishes. For the former, I discovered multiple new SRs from the vast and under-sampled swath of animal diversity known as invertebrates. I used the sequences of these and other newly discovered related receptors in combination with genomic data and molecular phylogenetic techniques to revise the understanding of the evolutionary history of this important gene family. While previous studies have suggested that vertebrate SR diversity arose from a gene duplication in an ancestor of all bilaterian animals, my work presents strong evidence that this duplication occurred much later, at the base of the chordates. Furthermore, to determine the implications of added diversity and a revised phylogeny on inferences of the functional evolution of SRs, I functionally characterized heretofore-unknown SRs from hemichordates, an acoelomate flatworm, and a chaetognath and statistically reconstructed and functionally characterized ancestral SRs. My results expand the known sequence and functional repertoire of SRs in animals while reinforcing the previous inference that all SRs evolved from an estrogen-sensitive ancestral receptor. I also explored the consequences of the evolution of antifreeze proteins in Antarctic notothenioid fishes, a crucial adaptation to their icy, polar environment. These special proteins adsorb to ice crystals that enter a fish's body and prevent further growth, thereby averting death. I discovered that, in addition to their lifesaving growth-inhibiting ability, AFPs also prevent the melting of internal ice crystals at temperatures above the expected equilibrium melting point. Together with a decade-long temperature record of one of the coldest fish habitats on earth, my experimental results show that the evolution and expression of antifreeze proteins is accompanied by a potentially detrimental consequence: the lifelong accumulation of ice inside these fishes' bodies. This dissertation includes previously published co-authored material as well as unpublished co-authored material. / 2017-01-14
22

The Rational Design of Potent Ice Recrystallization Inhibitors for Use as Novel Cryoprotectants

Capicciotti, Chantelle January 2014 (has links)
The development of effective methods to cryopreserve precious cell types has had tremendous impact on regenerative and transfusion medicine. Hematopoietic stem cell (HSC) transplants from cryopreserved umbilical cord blood (UCB) have been used for regenerative medicine therapies to treat conditions including hematological cancers and immodeficiencies. Red blood cell (RBC) cryopreservation in blood banks extends RBC storage time from 42 days (for hypothermic storage) to 10 years and can overcome shortages in blood supplies from the high demand of RBC transfusions. Currently, the most commonly utilized cryoprotectants are 10% dimethyl sulfoxide (DMSO) for UCB and 40% glycerol for RBCs. DMSO is significantly toxic both to cells and patients upon its infusion. Glycerol must be removed to <1% post-thaw using complicated, time consuming and expensive deglycerolization procedures prior to transfusion to prevent intravascular hemolysis. Thus, there is an urgent need for improvements in cryopreservation processes to reduce/eliminate the use of DMSO and glycerol. Ice recrystallization during cryopreservation is a significant contributor to cellular injury and reduced cell viability. Compounds capable of inhibiting this process are thus highly desirable as novel cryoprotectants to mitigate this damage. The first compounds discovered that were ice recrystallization inhibitors were the biological antifreezes (BAs), consisting of antifreeze proteins and glycoproteins (AFPs and AFGPs). As such, BAs have been explored as potential cryoprotectants, however this has been met with limited success. The thermal hysteresis (TH)activity and ice binding capabilities associated with these compounds can facilitate cellular damage, especially at the temperatures associated with cryopreservation. Consequently, compounds that possess “custom-tailored” antifreeze activity, meaning they exhibit the potent ice recrystallization inhibition (IRI) activity without the ability to bind to ice or exhibit TH activity,are highly desirable for potential use in cryopreservation. This thesis focuses on the rational design of potent ice recrystallization inhibitors and on elucidating important key structural motifs that are essential for potent IRI activity. While particular emphasis in on the development of small molecule IRIs, exploration into structural features that influence the IRI of natural and synthetic BAs and BA analogues is also described as these are some of the most potent inhibitors known to date. Furthermore, this thesis also investigates the use of small molecule IRIs for the cryopreservation of various different cell types to ascertain their potential as novel cryoprotectants to improve upon current cryopreservation protocols, in particular those used for the long-term storage of blood and blood products. Through structure-function studies the influence of (glyco)peptide length, glycosylation and solution structure for the IRI activity of synthetic AFGPs and their analogues is described. This thesis also explores the relationship between IRI, TH and cryopreservation ability of natural AFGPs, AFPs and mutants of AFPs. While these results further demonstrated that BAs are ineffective as cryoprotectants, it revealed the potential influence of ice crystal shape and growth progression on cell survival during cryopreservation. One of the most significant results of this thesis is the discovery of alkyl- and phenolicglycosides as the first small molecule ice recrystallization inhibitors. Prior to this discovery, all reported small molecules exhibited only a weak to moderate ability to inhibit ice recrystallization. To understand how these novel small molecules inhibit this process, structure-function studies were conducted on highly IRI active molecules. These results indicated that key structural features, including the configuration of carbons bearing hydroxyl groups and the configuration of the anomeric center bearing the aglycone, are crucial for potent activity. Furthermore, studies on the phenolic-glycosides determined that the presence of specific substituents and their position on the aryl ring could result in potent activity. Moreover, these studies underscored the sensitivity of IRI activity to structural modifications as simply altering a single atom or functional group on this substituent could be detrimental for activity. Finally, various IRI active small molecules were explored for their cryopreservation potential with different cell types including a human liver cell line (HepG2), HSCs obtained from human UCB, and RBCs obtained from human peripheral blood. A number of phenolic-glycosides were found to be effective cryo-additives for RBC freezing with significantly reduced glycerol concentrations (less than 15%). This is highly significant as it could drastically decrease the deglycerolization processing times that are required when RBCs are cryopreserved with 40% glycerol. Furthermore, it demonstrates the potential for IRI active small molecules as novel cryoprotectants that can improve upon current cryopreservation protocols that are limited in terms of the commonly used cryoprotectants, DMSO and glycerol.
23

Experimental Investigation of the Interactions of Hyperactive Antifreeze Proteins with Ice Crystals

Celik, Yeliz 16 April 2010 (has links)
No description available.
24

Characterization and expression patterns of five Winter Rye β-1,3-endoglucanases and their role in cold acclimation

McCabe, Shauna January 2007 (has links)
Winter rye produces ice-modifying antifreeze proteins upon cold treatment. Two of these antifreeze proteins are members of the large, highly conserved, β-1,3-endoglucanase family. This project was designed to identify glucanase genes that are expressed during cold acclimation, wounding, pathogen infection, drought or treatment with the phytohormones ethylene and MeJa. Additionally, a more detailed proteomic analysis was to be carried out to evaluate the glucanase content of the apoplast of cold-acclimated (CA) winter rye. Results of 2D SDS-PAGE analysis revealed that non-acclimated whole leaf protein extracts contain at least two β-1,3-endoglucanses while CA whole leaf protein extracts contain at least three β-1,3-endoglucanses. Subsequent 2D SDS-PAGE analysis was conducted on the apoplast extracts of NA and CA winter rye plants revealed the limitations of standard 1D SDS-PAGE. The 2-dimensional gel analysis revealed that there is a minimum of 25 proteins within the apoplast of CA winter rye, including at least 5 β-1,3-endoglucanases. Genome walking was used to isolate cold-responsive glucanase genes. The five genes isolated were designated scGlu6, scGlu9, scGlu10, scGlu11 and scGlu12. The cis-element pattern within the promoter of each gene was evaluated using online databases of documented plant cis elements. As expected, all of the promoters contained elements associated with cold, biotic and abiotic stresses, light regulation, and development. The expression patterns predicted by the cis elements in each promoter were compared to the mRNA abundance produced by each gene as detected by semi-quantitative reverse transcriptase PCR. In most cases, the abundance of transcripts arising from each gene loosely corresponded to the expression pattern predicted by the cis elements the corresponding promoter. Transcripts of scGlu9, 10 and 11 were present in cold-treated tissues and are candidates for β-1,3-endoglucanases with antifreeze activity. The results presented in this thesis provide additional insight into the apoplast proteome of CA winter rye plants as well as the complexity of the signals controlling the proteins that reside there. Although there are still a number of unresolved questions, this research opens new directions for future studies in the cold acclimation process in winter rye and specifically for the contribution of β -1,3-endoglucanses.
25

THE MYSTERIES OF MEMORY EFFECT AND ITS ELIMINATION WITH ANTIFREEZE PROTEINS

Walker, Virginia K., Zeng, Huang, Gordienko, Raimond V., Kuiper, Michael J., Huva, Emily I., Ripmeester, John A. 07 1900 (has links)
Crystallization of water or water-encaged gas molecules occurs when nuclei reach a critical size. Certain antifreeze proteins (AFPs) can inhibit the growth of both of these, with most representations conceiving of an embryonic crystal with AFPs adsorbing to a preferred face, resulting in a higher kinetic barrier for molecule addition. We have examined AFP-mediated inhibition of ice and clathrate hydrate crystallization, and these observations can be both explained and modeled using this mechanism for AFP action. However, the remarkable ability of AFPs to eliminate „memory effect‟ (ME) or the faster reformation of clathrate hydrates after melting, prompted us to examine heterogeneous nucleation. The ubiquitous impurity, silica, served as a model nucleator hydrophilic surface. Quartz crystal microbalance-dissipation (QCM-D) experiments indicated that an active AFP was tightly adsorbed to the silica surface. In contrast, polyvinylpyrrolidone (PVP) and polyvinylcaprolactam (PVCap), two commercial hydrate kinetic inhibitors that do not eliminate ME, were not so tightly adsorbed. Significantly, a mutant AFP (with no activity toward ice) inhibited THF hydrate growth, but not ME. QCM-D analysis showed that adsorption of the mutant AFP was more similar to PVCap than the active AFP. Thus, although there is no evidence for „memory‟ in ice reformation, and the structures of ice and clathrate hydrate are distinct, the crystallization of ice and hydrates, and the elimination of the more rapid recrystallization of hydrates, can be mediated by the same proteins.
26

Ordered Aggregation of Benzamide Crystals Induced using a "Motif Capper" Additive.

Blagden, Nicholas, Song, M., Davey, R.J., Seton, L., Seaton, Colin C. January 2005 (has links)
No / This paper reports on the growth of benzamide crystals in the presence of 2'-aminoacetophenone. The resulting self-replicating intergrowth of benzamide crystals gives rise to ordered crystal aggregates in which individuals share a common c*. This behavior is interpreted using the concept of a motif capper additive which is able to halt the extension of structural motifs at the surface of a growing crystal. In this case the additive was selected to terminate the hydrogen-bonding ribbons, which extend along the b axis of the benzamide structure.
27

A Study on the Hyperactive Antifreeze Proteins from the Insect <i>Tenebrio molitor</i>

Choi, Young Eun January 2007 (has links)
No description available.

Page generated in 0.059 seconds