11 |
A search for new physics in photon-lepton events in proton-antiproton collisions at [square root] S = 1.8 TeV /Berryhill, Jeffrey W. January 2000 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Physics, December 2000. / Includes bibliographical references. Also available on the Internet.
|
12 |
Antiproton-proton cross sections at 1.0, 1.25, and 2.0 BevCoombes, Charles A. January 1960 (has links)
Thesis--University of California, Berkeley, 1960. / "Physics and Mathematics" -t.p. "TID-4500 (15th Ed.)" -t.p. Includes bibliographical references (p. 50-51).
|
13 |
Formation of protonium and positronium in atomic collisionsWhitehead, Richard John January 2001 (has links)
A minimum-norm method has been developed for solving the coupled integro-differential equations describing the scattering of positrons by one-electron targets in which the rearrangement channels for positronium formation have been explicitly included. The minimum-norm method, applied to this application for the first time in this thesis, is an enhancement of a previously reported least-squares method which has enabled the extension to a significantly larger basis consisting of up to 26 states on the direct centre, including pseudostates, and 3 states on the positronium. The method has been applied here to e+-H and e+-He+ scattering; cross-sections have been produced for the latter over a range of energies up to 250 eV. The basis was found to be large enough to produce smooth cross sections and little evidence of pseudoresonance structure was found. The results are the first converged cross sections to be calculated for e+-He+ scattering using the coupled channel approximation. Results for e+-H scattering compare well with the work of other authors. A highly efficient parallel code was developed for solving the largest coupling cases. The results prove the minimum-norm approach to be an accurate and reliable method for large-scale coupled channel calculations involving rearrangement collisions. Also in this thesis, the capture of slow antiprotons by atomic hydrogen and positronium has been simulated by the Classical Trajectory Monte Carlo (CTMC) method. Statistically accurate cross sections for protonium and antihydrogen formation have been obtained and the energy dependence of the process established. Antihydrogen formation from antiproton collisions with positronium in the presence of a laser has also been simulated with the CTMC method and the effects of laser polarisation, frequency and intensity studied. Enhancements of the antihydrogen formation cross section were observed and it is suggested that more sophisticated calculations should be undertaken
|
14 |
Perturbative predictions for 4 jet production at LEP and prompt photon emission at the tevatronCullen, M. A. January 1999 (has links)
Many contemporary experimental QCD results achieve greater accuracy in measurement than equivalent theoretical predictions calculated at leading order. Therefore it is necessary to consider next to leading order (NLO) predictions for many processes in order to compare experiment with theory. Accurate theoretical predictions are also important in order to reduce the uncertainty in QCD parameters such as the coupling constant a, and to test whether QCD is in fact the correct theory to describe the strong interaction. With NLO results it is also possible to separate different clustering algorithms and test non-perturbative effects. This thesis concentrates on the techniques necessary for the calculation of NLO observables from the processes e(^+)e(^-) → 4 jets and pp → γ + X. We formulate a new version of the hybrid subtraction scheme based on the colour antenna structure of the final state to evaluate the necessary phase space integrals for the 4 jet process. The scheme is universal and can be applied to any QCD processes. The general purpose Monte Carlo EERAD2 which incorporates this new technique is compared with both experimental data gathered by the DELPHI collaboration and other groups which have reported similar calculations. A Monte Carlo written for the process pp → γ + X requires a knowledge of the non- perturbative photon fragmentation function, D(_γ), and the second half of this thesis concentrates on a calculation of this process using the ALEPH measurement of D(_γ) based on a democratic algorithm. The Monte Carlo DPRAD incorporates these techniques and results from it are compared with data from the Tevatron.
|
Page generated in 0.1309 seconds