• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Highly Transparent Glass using Nanoparticle Films for Enhanced Optoelectronics

Loh, Yi Yang Joel 27 June 2013 (has links)
This thesis provides an investigation and review of homogeneous multilayer anti-reflective coatings (ARC) on glass. Recently, numerical optimization has become popular in optimizing the number of layers at a defined wavelength range and at angular incident angles. In this investigation, the design of the index profile is optimized for normal incident angle and angular incident angles by an evolutionary genetic algorithm. The anti-reflective coatings consist of multilayer porous silica or tin oxide nanoparticle films, which are fabricated by mixing 10nm silica nanoparticle or 10nm tin oxide nanoparticle colloidal solutions with varying amounts of 50nm polystyrene colloidal solutions, followed by spin coating on a glass substrate, and sintering at 400˚C for 40 minutes, which burns off the embedded polystyrene and renders a voided matrix. Experiments were carried out to produce ARCs based on well-known index profiles, and based on genetic algorithm optimization
2

Highly Transparent Glass using Nanoparticle Films for Enhanced Optoelectronics

Loh, Yi Yang Joel 27 June 2013 (has links)
This thesis provides an investigation and review of homogeneous multilayer anti-reflective coatings (ARC) on glass. Recently, numerical optimization has become popular in optimizing the number of layers at a defined wavelength range and at angular incident angles. In this investigation, the design of the index profile is optimized for normal incident angle and angular incident angles by an evolutionary genetic algorithm. The anti-reflective coatings consist of multilayer porous silica or tin oxide nanoparticle films, which are fabricated by mixing 10nm silica nanoparticle or 10nm tin oxide nanoparticle colloidal solutions with varying amounts of 50nm polystyrene colloidal solutions, followed by spin coating on a glass substrate, and sintering at 400˚C for 40 minutes, which burns off the embedded polystyrene and renders a voided matrix. Experiments were carried out to produce ARCs based on well-known index profiles, and based on genetic algorithm optimization

Page generated in 0.0701 seconds