• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of HIPSTR highlights the heterogeneous expression pattern of lncRNAs in human embryos and stable cell lines / Caracterização do HIPSTR destaca o padrão de expressão heterogênea de IncRNAs em embriões humanos e linhagens estáveis de células

Yunusov, Dinar 10 June 2016 (has links)
There is a growing appreciation that eukaryotic genomes are transcribed into numerous, previously undetected - and thus uncharacterized regulatory long non-coding RNAs (lncRNAs). Recent studies are primarily focused on lncRNAs transcribed from intergenic regions and enhancers, leaving antisense lncRNAs the least studied group of lncRNAs. At the same time, antisense transcription occurs in up to 74 % of human gene loci, frequently - from the opposite strand of genes encoding proteins involved in regulation of transcription. Here, we identified HIPSTAR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), a novel conserved lncRNA that is transcribed antisense to the TFAP2A gene. Unlike previously reported antisense lncRNAs, HIPSTR expression does not correlate with the expression of its antisense counterpart. Although HIPSTAR and TFAP2A are co-expressed in in vitro derived neural crest and trophoblast cells, only HIPSTAR and not TFAP2A is specifically expressed in a subset of cells within 8-cell- and morula-stage human embryos. We show that, similar to HIPSTAR, in the individual cells of developing human embryos or of stable cell lines the expression of lncRNAs is more highly heterogeneous than the expression of mRNAs. Finally, we demonstrate that HIPSTAR depletion in HEK293 and H1BP, a human embryonic stem cell line, predominantly affects the expression levels of genes involved in early organismal development and cell differentiation. Together, we show that expression of HIPSTAR and hundreds other lncRNAs is highly heterogeneous in human embryos and cell lines. We use HIPSTAR to exemplify the functional relevance of lncRNAs with heterogeneous and developmental stage-specific expression patterns. / Tem sido cada vez mais reconhecido que a transcrição dos genomas eucarióticos produz múltiplos transcritos novos, anteriormente não detectados e ainda não caracterizados, sendo que a maioria é constituida de RNAs não-codificantes longos (lncRNAs) regulatórios. Estudos recentes estão focados principalmente nos lncRNAs transcritos de regiões intergênicas e enhancers; assim, o grupo dos lncRNAs antisenso permanece o menos estudado de todos. Ao mesmo tempo, a transcrição antisenso ocorre em até 74% dos loci de genes humanos, frequentemente - a partir da fita oposta de genes que codificam proteínas envolvidas na regulação da transcrição. No presente trabalho, nós identificamos HIPSTR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), um lncRNA novo conservado que é transcrito a partir da fita antisenso do gene TFAP2A. Ao contrário do anteriormente relatado para os lncRNAs antisenso, a expressão de HIPSTR não está correlacionada com a expressão do gene da fita oposta. HIPSTR e TFAP2A são co-expressos em células da crista neural e em trofoblastos derivadas in vitro, mas somente HIPSTR e não TFAP2A está especificamente expresso num subconjunto de células de embriões humanos nos estágios de 8-células e mórula. Mostramos que, semelhante a HIPSTR, a expressão de lncRNAs é mais altamente heterogênea que a expressão de mRNAs em células individuais de embriões humanos em desenvolvimento ou em linhagens estáveis de células. Finalmente, nós demonstramos que a depleção de HIPSTAR em células HEK293 e H1BP, uma linhagem de células tronco embrionárias humanas, afeta predominantemente os níveis de genes envolvidos no início do desenvolvimento do organismo e na diferenciação de células. No conjunto, nós mostramos que a expressão de HIPSTR e de centenas de outros lncRNAs é altamente heterogênea em embriões humanos e linhagens celulares. Usamos HIPSTR para exemplificar a relevância funcional de lncRNAs com padrões de expressão heterogêneos e estágio-de-desenvolvimento específicos.
2

Characterization of HIPSTR highlights the heterogeneous expression pattern of lncRNAs in human embryos and stable cell lines / Caracterização do HIPSTR destaca o padrão de expressão heterogênea de IncRNAs em embriões humanos e linhagens estáveis de células

Dinar Yunusov 10 June 2016 (has links)
There is a growing appreciation that eukaryotic genomes are transcribed into numerous, previously undetected - and thus uncharacterized regulatory long non-coding RNAs (lncRNAs). Recent studies are primarily focused on lncRNAs transcribed from intergenic regions and enhancers, leaving antisense lncRNAs the least studied group of lncRNAs. At the same time, antisense transcription occurs in up to 74 % of human gene loci, frequently - from the opposite strand of genes encoding proteins involved in regulation of transcription. Here, we identified HIPSTAR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), a novel conserved lncRNA that is transcribed antisense to the TFAP2A gene. Unlike previously reported antisense lncRNAs, HIPSTR expression does not correlate with the expression of its antisense counterpart. Although HIPSTAR and TFAP2A are co-expressed in in vitro derived neural crest and trophoblast cells, only HIPSTAR and not TFAP2A is specifically expressed in a subset of cells within 8-cell- and morula-stage human embryos. We show that, similar to HIPSTAR, in the individual cells of developing human embryos or of stable cell lines the expression of lncRNAs is more highly heterogeneous than the expression of mRNAs. Finally, we demonstrate that HIPSTAR depletion in HEK293 and H1BP, a human embryonic stem cell line, predominantly affects the expression levels of genes involved in early organismal development and cell differentiation. Together, we show that expression of HIPSTAR and hundreds other lncRNAs is highly heterogeneous in human embryos and cell lines. We use HIPSTAR to exemplify the functional relevance of lncRNAs with heterogeneous and developmental stage-specific expression patterns. / Tem sido cada vez mais reconhecido que a transcrição dos genomas eucarióticos produz múltiplos transcritos novos, anteriormente não detectados e ainda não caracterizados, sendo que a maioria é constituida de RNAs não-codificantes longos (lncRNAs) regulatórios. Estudos recentes estão focados principalmente nos lncRNAs transcritos de regiões intergênicas e enhancers; assim, o grupo dos lncRNAs antisenso permanece o menos estudado de todos. Ao mesmo tempo, a transcrição antisenso ocorre em até 74% dos loci de genes humanos, frequentemente - a partir da fita oposta de genes que codificam proteínas envolvidas na regulação da transcrição. No presente trabalho, nós identificamos HIPSTR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), um lncRNA novo conservado que é transcrito a partir da fita antisenso do gene TFAP2A. Ao contrário do anteriormente relatado para os lncRNAs antisenso, a expressão de HIPSTR não está correlacionada com a expressão do gene da fita oposta. HIPSTR e TFAP2A são co-expressos em células da crista neural e em trofoblastos derivadas in vitro, mas somente HIPSTR e não TFAP2A está especificamente expresso num subconjunto de células de embriões humanos nos estágios de 8-células e mórula. Mostramos que, semelhante a HIPSTR, a expressão de lncRNAs é mais altamente heterogênea que a expressão de mRNAs em células individuais de embriões humanos em desenvolvimento ou em linhagens estáveis de células. Finalmente, nós demonstramos que a depleção de HIPSTAR em células HEK293 e H1BP, uma linhagem de células tronco embrionárias humanas, afeta predominantemente os níveis de genes envolvidos no início do desenvolvimento do organismo e na diferenciação de células. No conjunto, nós mostramos que a expressão de HIPSTR e de centenas de outros lncRNAs é altamente heterogênea em embriões humanos e linhagens celulares. Usamos HIPSTR para exemplificar a relevância funcional de lncRNAs com padrões de expressão heterogêneos e estágio-de-desenvolvimento específicos.
3

O transcritoma antisense primário de Halobacterium salinarum NRC-1 / The antisense primary transcriptome of Halobacterium salinarum NRC-1

João Paulo Pereira de Almeida 04 September 2018 (has links)
Em procariotos, RNAs antisense (asRNAs) constituem a classe de RNAs não codificantes (ncRNAs) mais numerosa detectada por métodos de avaliação de transcritoma em larga escala. Apesar da grande abundância, pouco se sabe sobre mecanismos regulatórios e aspectos da conservação evolutiva dessas moléculas, principalmente em arquéias, onde o mecanismo de degradação de RNAs dupla fita (dsRNAs) é um fenômeno pouco conhecido. No presente estudo, utilizando dados de dRNA-seq, identificamos 1626 inícios de transcrição primários antisense (aTSSs) no genoma de Halobacterium salinarum NRC-1, importante organismo modelo para estudos de regulação gênica no domínio Archaea. Integrando dados de expressão gênica obtidos a partir de 18 bibliotecas de RNA-seq paired-end, anotamos 846 asRNAs a partir dos aTSSs mapeados. Encontramos asRNAs em ~21% dos genes anotados, alguns desses relacionados a importantes características desse organismo como: codificadores de proteínas que constituem vesículas de gás e da proteína bacteriorodopsina, além de vários genes relacionados a maquinaria de tradução e transposases. Além desses, encontramos asRNAs em genes pertencentes a sistemas de toxinas-antitoxinas do tipo II e utilizando dados públicos de dRNA-seq, evidenciamos que esse é um fenômeno que ocorre em bactérias e arquéias. A interação de um ncRNA com seu RNA alvo pode ser dependente de proteínas, em arquéias, a proteína LSm é uma chaperona de RNA homóloga a Hfq de bactérias, implicada no controle pós-transcricional. Utilizamos dados de RIP-seq de RNAs imunoprecipitados com LSm e identificamos 91 asRNAs interagindo com essa proteína, para 81 desses, o mRNA do gene sense também foi encontrado interagindo. Buscando por aTSSs presentes nas mesmas regiões de genes ortólogos, identificamos 160 aTSSs que dão origem a asRNAs em H. salinarum possivelmente conservados em Haloferax volcanii. A expressão dos asRNAs anotados foi avaliada ao longo de uma curva de crescimento e em uma linhagem knockout de um gene que codifica uma RNase R, possível degradadora de dsRNAs em arquéias. Encontramos um total de 144 asRNAs diferencialmente expressos ao longo da curva de crescimento, para 56 desses o gene sense também está diferencialmente expresso, caracterizando possíveis mecanismos de regulação em cis por esses RNAs. Na linhagem knockout, encontramos cinco asRNAs diferencialmente expressos e apenas para um desses o gene sense também está diferencialmente expresso, resultado que não nos permitiu inferir um possível papel de degradação de dsRNAs da RNAse R em H. salinarum NRC-1. Nesse trabalho apresentamos um mapeamento completo do transcritoma antisense primário de H. salinarum NRC-1 com resultados que consistem em um importante passo na direção da compreensão do envolvimento da transcrição antisense na regulação gênica pós-transcricional desse organismo modelo do terceiro domínio da vida. / Antisense RNAs (asRNAs) constitute the most numerous class of non-coding RNAs (ncRNAs) detected by transcriptome highthroughput methods in prokaryotes. Despite this abundance, little is known about regulatory mechanisms and evolutionary aspects of these molecules, mainly in archaea, where the mechanism of double-strand RNA (dsRNA) degradation remains poorly understood. In this study, using dRNA-seq data, we identified 1626 antisense transcription start sites (aTSSs) in the genome of Halobacterium salinarum NRC-1, an important model organism for gene expression regulation studies in Archaea. By integrating gene expression data from 18 RNA-seq paired-end libraries, we were able to annotate 846 asRNAs from mapped aTSSs. We found asRNAs in ~21% of annotated genes including genes related to important characteristics of this organism, such as: gas vesicle proteins, bacteriorhodopsin, translation machinery and transposases. We also found asRNAs in type II toxin-antitoxin systems and using public dRNA-seq data, we show evidences that this phenomenon might be conserved in archaea and bacteria. The interaction of a ncRNA with its target may depend on intermediary proteins action. In archaea, the LSm protein is a RNA chaperone homologous to bacterial Hfq, involved in post-transcriptional regulation. We used RIP-seq data from RNAs immunoprecipitated with LSm and identified 91 asRNAs interacting with this protein, for 81 of these the mRNA of the sense gene is also interacting. We searched for aTSSs present in the same region of orthologous genes in the Haloferax volcanii. We found 160 aTSSs that originated asRNAs in H. salinarum NRC-1 that might be conserved in this two archaea. The expression of annotated asRNAs was analyzed over a growth curve and in a knockout strain for RNase R gene. We found 144 asRNA differentially expressed over the growth curve, for 56 of these the sense gene was also differentially expressed, characterizing possible cis regulators asRNAs. In the knockout strain we found five differentially expressed asRNAs and only one asRNA/gene pair, this result does not allow us to infer a dsRNA degradation in vivo activity for this RNase in H. salinarum NRC- 1. This work contributes to the discovery of the antisense transcriptome in H. salinarum NRC- 1 a relevant step to uncover the post-transcriptional gene regulatory network in this archaeon.
4

O transcritoma antisense primário de Halobacterium salinarum NRC-1 / The antisense primary transcriptome of Halobacterium salinarum NRC-1

Almeida, João Paulo Pereira de 04 September 2018 (has links)
Em procariotos, RNAs antisense (asRNAs) constituem a classe de RNAs não codificantes (ncRNAs) mais numerosa detectada por métodos de avaliação de transcritoma em larga escala. Apesar da grande abundância, pouco se sabe sobre mecanismos regulatórios e aspectos da conservação evolutiva dessas moléculas, principalmente em arquéias, onde o mecanismo de degradação de RNAs dupla fita (dsRNAs) é um fenômeno pouco conhecido. No presente estudo, utilizando dados de dRNA-seq, identificamos 1626 inícios de transcrição primários antisense (aTSSs) no genoma de Halobacterium salinarum NRC-1, importante organismo modelo para estudos de regulação gênica no domínio Archaea. Integrando dados de expressão gênica obtidos a partir de 18 bibliotecas de RNA-seq paired-end, anotamos 846 asRNAs a partir dos aTSSs mapeados. Encontramos asRNAs em ~21% dos genes anotados, alguns desses relacionados a importantes características desse organismo como: codificadores de proteínas que constituem vesículas de gás e da proteína bacteriorodopsina, além de vários genes relacionados a maquinaria de tradução e transposases. Além desses, encontramos asRNAs em genes pertencentes a sistemas de toxinas-antitoxinas do tipo II e utilizando dados públicos de dRNA-seq, evidenciamos que esse é um fenômeno que ocorre em bactérias e arquéias. A interação de um ncRNA com seu RNA alvo pode ser dependente de proteínas, em arquéias, a proteína LSm é uma chaperona de RNA homóloga a Hfq de bactérias, implicada no controle pós-transcricional. Utilizamos dados de RIP-seq de RNAs imunoprecipitados com LSm e identificamos 91 asRNAs interagindo com essa proteína, para 81 desses, o mRNA do gene sense também foi encontrado interagindo. Buscando por aTSSs presentes nas mesmas regiões de genes ortólogos, identificamos 160 aTSSs que dão origem a asRNAs em H. salinarum possivelmente conservados em Haloferax volcanii. A expressão dos asRNAs anotados foi avaliada ao longo de uma curva de crescimento e em uma linhagem knockout de um gene que codifica uma RNase R, possível degradadora de dsRNAs em arquéias. Encontramos um total de 144 asRNAs diferencialmente expressos ao longo da curva de crescimento, para 56 desses o gene sense também está diferencialmente expresso, caracterizando possíveis mecanismos de regulação em cis por esses RNAs. Na linhagem knockout, encontramos cinco asRNAs diferencialmente expressos e apenas para um desses o gene sense também está diferencialmente expresso, resultado que não nos permitiu inferir um possível papel de degradação de dsRNAs da RNAse R em H. salinarum NRC-1. Nesse trabalho apresentamos um mapeamento completo do transcritoma antisense primário de H. salinarum NRC-1 com resultados que consistem em um importante passo na direção da compreensão do envolvimento da transcrição antisense na regulação gênica pós-transcricional desse organismo modelo do terceiro domínio da vida. / Antisense RNAs (asRNAs) constitute the most numerous class of non-coding RNAs (ncRNAs) detected by transcriptome highthroughput methods in prokaryotes. Despite this abundance, little is known about regulatory mechanisms and evolutionary aspects of these molecules, mainly in archaea, where the mechanism of double-strand RNA (dsRNA) degradation remains poorly understood. In this study, using dRNA-seq data, we identified 1626 antisense transcription start sites (aTSSs) in the genome of Halobacterium salinarum NRC-1, an important model organism for gene expression regulation studies in Archaea. By integrating gene expression data from 18 RNA-seq paired-end libraries, we were able to annotate 846 asRNAs from mapped aTSSs. We found asRNAs in ~21% of annotated genes including genes related to important characteristics of this organism, such as: gas vesicle proteins, bacteriorhodopsin, translation machinery and transposases. We also found asRNAs in type II toxin-antitoxin systems and using public dRNA-seq data, we show evidences that this phenomenon might be conserved in archaea and bacteria. The interaction of a ncRNA with its target may depend on intermediary proteins action. In archaea, the LSm protein is a RNA chaperone homologous to bacterial Hfq, involved in post-transcriptional regulation. We used RIP-seq data from RNAs immunoprecipitated with LSm and identified 91 asRNAs interacting with this protein, for 81 of these the mRNA of the sense gene is also interacting. We searched for aTSSs present in the same region of orthologous genes in the Haloferax volcanii. We found 160 aTSSs that originated asRNAs in H. salinarum NRC-1 that might be conserved in this two archaea. The expression of annotated asRNAs was analyzed over a growth curve and in a knockout strain for RNase R gene. We found 144 asRNA differentially expressed over the growth curve, for 56 of these the sense gene was also differentially expressed, characterizing possible cis regulators asRNAs. In the knockout strain we found five differentially expressed asRNAs and only one asRNA/gene pair, this result does not allow us to infer a dsRNA degradation in vivo activity for this RNase in H. salinarum NRC- 1. This work contributes to the discovery of the antisense transcriptome in H. salinarum NRC- 1 a relevant step to uncover the post-transcriptional gene regulatory network in this archaeon.
5

Regulation of the Principal Cell Division Protein FtsZ of Escherichia Coli by Antisense RNA and FtsH Protease

Anand, Deepak January 2014 (has links) (PDF)
The PhD thesis is on the studsy of the influence of the ftsZ antisense RNA and FtsH protease on the synthesis and function of the Escherichia coli cytokinetic protein, FtsZ, which mediates septation during cell division. Thus, it involves three molecules, FtsZ, ftsZ antisense RNA, and FtsH protease. While the E. coli ftsZ antisense RNA is being identified and structurally and functionally characterised for the first time, there has been some earlier studies in the laboratory in which the FtsH protease was found to have influence on the presence of the FtsZ rings at the mid-cell site. The Chapter 1 is the Introduction to the thesis presented in 3 parts –Part 1A, 1B, and 1C, introducing FtsZ and bacterial cell division, bacterial antisense RNAs, and FtsH protease, respectively. The Chapter 2 gives the description of the Materials and Methods used in the study. The Chapter 3 presents the identification, structural and functional characterisation of the ftsZ cis-antisense RNA, and its role in the regulation of FtsZ protein levels. Initially, the expression of cis-encoded antisense RNA from E. coli ftsZ loci was demonstrated during the different growth phases of the bacterium (RT-PCR/qPCR data). Antisense RNA is expressed from three promoters (primer extension and promoter probe data) on the complementary strand of the ftsZ coding region and terminates at the singletrand te complementary toftsAthegenethat 3’islocatedregionupstreamof theofftsZ the gene. Induced overexpression of a portion (423 bp) of the antisense RNA, spanning the ftsZ AUG codon and the ribosome binding site of ftsZ mRNA, from pBS(KS) could downregulate the synthesis of FtsZ protein to approximately 30%, leading to cell division arrest and filamentation of the cells at 42°C. This effect was less dramatic at 30ºC, probably due to less melting of the antisense RNA. Immunostaining performed on the induced culture did not show FtsZ ring formation after overnight induction whereas reduction in the proportion of the cells carrying FtsZ rings could be clearly observed after 2 hrs of induction. Real time PCR analysis performed for relative quantitation of ftsZ mRNA and ftsZas RNA from different growth phases (0.2 to 2.5 OD600 nm) showed growth phase dependent expression of the antisense RNA. While the levels of ftsZas RNA were found to be high at lower OD cultures or early growth phase cultures, the levels were found to be low at the late log phase and stationary phase cultures. Thus, when the cells are actively dividing and therefore need more FtsZ, the levels of the ftsZas RNA are high, while the cells are not actively dividing and therefore the FtsZ levels are low, the levels of the ftsZas RNA are low. At any phase of the growth, the ratio of the ftsZ mRNA to the ftsZas RNA was always found to be 6:1. Thus, the physiological role the ftsZas RNA is to maintain the availability of the ftsZ mRNA at a level that is commensurate with the requirement for the FtsZ protein during the different stages of the cell growth and division. The Chapter 4 is on the study of the possible mechanism behind the influence of FtsH protease on the presence of FtsZ rings at the mid-cell site during septation in cell division. Immunostaining for FtsZ in the mid-log phase E. coli cells showed that 82% of the AR3289 (ftsH wild type) cells possessed FtsZ rings, while only 18% of the AR3291 (ftsH-null maintained viable by a suppressor mutation) cells showed Z-rings. While the AR3289 cells showed a cell doubling time of 20 min, the AR3291 cells had a cell doubling time of 45 min. The mass doubling time of AR3289 and AR3291 were 24 min and 54 min, respectively. These distinct differences were found in spite of the suppressor mutation suppressing all the deleterious effects of the lack of the essential protease, FtsH. Complementation of the ftsH-null cells (AR3291) with the wild type FtsH but not with the ATP-binding or ATPase, or protease-defective mutants of FtsH, restored the FtsZ ring status to about 80% of the cells. The growth rate of AR3291 was also partly restored to comparable to that of the wild type cells upon complementation. Western blotting for FtsZ, and the FtsZ-stabilising proteins, FtsA and ZipA, showed that the ftsH-null cells have low levels of FtsA, as compared to those in the isogenic wild type cells (AR3289). The levels of FtsZ and ZipA were comparable in both the cells. Quantitative PCR performed for different cell division genes within the dcw cluster showed no sign of change in the ftsA transcript levels in the ftsH-null cells, suggesting that the low levels of FtsA in the ftsH-null cells were not due to transcriptional downregulation. Further experiments showed that the half-life of FtsA protein in the AR3289 cells was 45 min, while that in the AR3291 cells was 24 min. This experiment showed that the low levels of FtsA in the ftsH-null cells was due to the low half-life of FtsA in the cells. Growth synchronisation of the AR3289 and AR3291 cells showed that the levels of FtsA prior to cell division stage do not increase in the ftsH-null cells as much as in the isogenic wild type cells. Thus, the ftsH-null cells must be somehow managing the division through the partial stabilisation of FtsZ rings by ZipA. Interestingly, immunostaining for FtsH in AR3289 cells showed the presence of FtsH at the mid-cell site, as co-localised with FtsZ, for a brief period prior to cell constriction. These observations suggest the involvement of FtsH in cell division process. The faster degradation of FtsA in the absence of FtsH protease implies that another protein, which may be a protease that directly degrades FtsA or a chaperone that helps the unfolding of FtsA for degradation, might be the substrate of FtsH protease. The absence of FtsH protease brings up the levels of this unknown protein, which in turn facilitates (if it is a chaperone) degradation of or directly degrades (if it is a protease) FtsA. This model for the link among FtsH, FtsA levels, and the presence of FtsZ has been proposed based on the observations. Thus, the present study reveals for the first time an FtsA-linked role for FtsH protease in the presence of FtsZ ring at the mid-cell site and hence in bacterial septal biogenesis. The thesis is concluded with the list of salient findings, publications, and references.

Page generated in 0.079 seconds