1 |
Frictional behavior of polymers: the transition from static to kinetic conditionsMolique, Robert S. 16 June 2009 (has links)
It is believed that the noise produced in squeaking dashboards is caused by the drop in friction force during the transition from static to kinetic conditions between the mating plastic components of the dashboard. The frictional behavior of a polymer determines whether there is a drop in friction force during this transition. This study investigates the frictional behavior of polymers under dry sliding conditions. Various compositions of ABS plastic along with Polypropylene were tested in a flat-on-flat configuration. There appears to be no consistent evidence of surface roughness effects on the magnitude of the drop in friction force. The surface roughness did have an effect on the frictional behavior of the polymers as did the material composition. A new test apparatus was designed to study the transition from static to kinetic conditions more closely. A computer model was developed to simulate this transition. The computer model was used to illustrate the effect of the friction-velocity curve on the frictional behavior of a surface interaction. A few conclusions are made about which friction mechanisms are in control of the polymer-on-polymer tribological system. / Master of Science
|
2 |
Antistatische Ausrüstung von duroplastischen KunststoffenSzabang, Katrin 02 September 2013 (has links) (PDF)
Da Kunststoffe im Allgemeinen einen spezifischen Oberflächenwiderstand von >10E12 Ω besitzen, müssen die Materialien zur Vermeidung von elektrostatischen Aufladungen bei Bauelementen der Elektroindustrie antistatisch ausgerüstet werden. Durch elektrostatische Aufladungen können die Bauelemente eine Beeinträchtigung ihrer Funktion erfahren und Personen gefährden. Weiterhin ermöglicht die Absenkung des spezifischen Oberflächenwiderstandes eine elektrostatische (Pulver-)Lackierung.
Für die Herstellung von Kunststoffen mit kleinem spezifischen Durchgangswiderstand ist der Zusatz von leitenden Substanzen, wie z. B: Leitfähigkeitsruß, Graphit, Eisenoxid-, Kupfer- oder Aluminiumteilchen, metallisierte Glasfasern oder –kugeln, Edelstahlfasern oder Kohlenstofffasern, üblich. Die Substanzen werden dabei physikalisch in die Polymermatrix eingemischt. Je höher der Volumenanteil der Additive für die benötigte Ableitfähigkeit bezogen auf die Gesamtrezeptur ist, desto größer ist jedoch auch der Einfluss dieser Additive auf die mechanischen Eigenschaften in Relation zum unadditivierten Ausgangsmaterial. Unterschiedliche Polaritäten und Oberflächenspannungen von Additiv und Matrix bedingen zudem Probleme bei der Homogenisierung der Additive in der Matrix. Eine homogene Verteilung über das Volumen ist jedoch Voraussetzung dafür mit möglichst wenig Additiv die Perkolationsschwelle zu erreichen. Aus dieser Sicht hat sich eine reaktive Ankopplung von leitfähigen Gruppen an Matrix- oder sonstige geeignete Rezepturbestandteile in der Vergangenheit, z.B. für MDF, als erfolgreicher Weg erwiesen.
Ziel war es, dieses Konzept auf duroplastische Kunststoffe zu übertragen und dessen spezifischen Oberflächenwiderstand von >10E12 Ω abzusenken. Im Rahmen dieser Arbeit sollten die Materialien SMC (Sheet molding compound) und Epoxidharzlaminate eine antistatische Ausrüstung erhalten.
|
3 |
Antistatische Ausrüstung von duroplastischen KunststoffenSzabang, Katrin 13 August 2013 (has links)
Da Kunststoffe im Allgemeinen einen spezifischen Oberflächenwiderstand von >10E12 Ω besitzen, müssen die Materialien zur Vermeidung von elektrostatischen Aufladungen bei Bauelementen der Elektroindustrie antistatisch ausgerüstet werden. Durch elektrostatische Aufladungen können die Bauelemente eine Beeinträchtigung ihrer Funktion erfahren und Personen gefährden. Weiterhin ermöglicht die Absenkung des spezifischen Oberflächenwiderstandes eine elektrostatische (Pulver-)Lackierung.
Für die Herstellung von Kunststoffen mit kleinem spezifischen Durchgangswiderstand ist der Zusatz von leitenden Substanzen, wie z. B: Leitfähigkeitsruß, Graphit, Eisenoxid-, Kupfer- oder Aluminiumteilchen, metallisierte Glasfasern oder –kugeln, Edelstahlfasern oder Kohlenstofffasern, üblich. Die Substanzen werden dabei physikalisch in die Polymermatrix eingemischt. Je höher der Volumenanteil der Additive für die benötigte Ableitfähigkeit bezogen auf die Gesamtrezeptur ist, desto größer ist jedoch auch der Einfluss dieser Additive auf die mechanischen Eigenschaften in Relation zum unadditivierten Ausgangsmaterial. Unterschiedliche Polaritäten und Oberflächenspannungen von Additiv und Matrix bedingen zudem Probleme bei der Homogenisierung der Additive in der Matrix. Eine homogene Verteilung über das Volumen ist jedoch Voraussetzung dafür mit möglichst wenig Additiv die Perkolationsschwelle zu erreichen. Aus dieser Sicht hat sich eine reaktive Ankopplung von leitfähigen Gruppen an Matrix- oder sonstige geeignete Rezepturbestandteile in der Vergangenheit, z.B. für MDF, als erfolgreicher Weg erwiesen.
Ziel war es, dieses Konzept auf duroplastische Kunststoffe zu übertragen und dessen spezifischen Oberflächenwiderstand von >10E12 Ω abzusenken. Im Rahmen dieser Arbeit sollten die Materialien SMC (Sheet molding compound) und Epoxidharzlaminate eine antistatische Ausrüstung erhalten.
|
Page generated in 0.1327 seconds