Spelling suggestions: "subject:"antisymmetric"" "subject:"symmetrized""
1 |
Hydrogen Isotope Productions in Sn+Sn Collisions with Radioactive Beams at 270 MeV/nucleon / 核子あたり270 MeVの放射性同位体ビームを用いたSn+Sn衝突における水素同位体生成Kaneko, Masanori 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23700号 / 理博第4790号 / 新制||理||1686(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 永江 知文, 准教授 銭廣 十三, 教授 中家 剛 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
2 |
Gamow-Teller transitions in the light N = Z odd-odd nuclei:Proton-neutron correlation and SU(4) symmetry with clusters / 軽いN=Z奇奇核におけるガモフ・テラー遷移:クラスターのある場合の陽子中性子相関とSU(4)対称性Morita, Hiroyuki 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21570号 / 理博第4477号 / 新制||理||1642(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 延與 佳子, 講師 村上 哲也, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
3 |
Electromagnetic processes in few-body systemsRampho, Gaotsiwe Joel 11 1900 (has links)
Electromagnetic processes induced by electron scattering off few-nucleon systems are theoretically
investigated in the non-relativistic formalism. Non-relativistic one-body nuclear current
operators are used with a parametrization of nucleon electromagnetic form factors based on
recent experimental nucleon scattering data. Electromagnetic form factors of three-nucleon
and four-nucleon systems are calculated from elastic electron-nucleus scattering information.
Nuclear response functions used in the determination of differential cross sections for inclusive
and exclusive quasi-elastic electron-nucleon scattering from the 4He nucleus are also calculated.
Final-state interactions in the quasi-elastic nucleon knockout process are explicitly taken into
account using the Glauber approximation. The sensitivity of the response functions to the
final-state interactions is investigated.
The Antisymmetrized Molecular Dynamics approach with angular momentum and parity projection
is employed to construct ground state wave functions for the nuclei. A reduced form of
the realistic Argonne V18 nucleon-nucleon potential is used to describe nuclear Hamiltonian.
A convenient numerical technique of approximating expectation values of nuclear Hamiltonian
operators is employed. The constructed wave functions are used to calculate ground-state energies,
root-mean-square radii and magnetic dipole moments of selected light nuclei. The theoretical
predictions of the nuclear properties for the selected nuclei give a satisfactory description
of experimental values. The Glauber approximation is combined with the Antisymmetrized
Molecular Dynamics to generate wave functions for scattering states in quasi-elastic scattering
processes. The wave functions are then used to study proton knockout reactions in the 4He
nucleus. The theoretical predictions of the model reproduce experimental observation quite well. / Physics / Ph D. (Physics)
|
4 |
Electromagnetic processes in few-body systemsRampho, Gaotsiwe Joel 11 1900 (has links)
Electromagnetic processes induced by electron scattering off few-nucleon systems are theoretically
investigated in the non-relativistic formalism. Non-relativistic one-body nuclear current
operators are used with a parametrization of nucleon electromagnetic form factors based on
recent experimental nucleon scattering data. Electromagnetic form factors of three-nucleon
and four-nucleon systems are calculated from elastic electron-nucleus scattering information.
Nuclear response functions used in the determination of differential cross sections for inclusive
and exclusive quasi-elastic electron-nucleon scattering from the 4He nucleus are also calculated.
Final-state interactions in the quasi-elastic nucleon knockout process are explicitly taken into
account using the Glauber approximation. The sensitivity of the response functions to the
final-state interactions is investigated.
The Antisymmetrized Molecular Dynamics approach with angular momentum and parity projection
is employed to construct ground state wave functions for the nuclei. A reduced form of
the realistic Argonne V18 nucleon-nucleon potential is used to describe nuclear Hamiltonian.
A convenient numerical technique of approximating expectation values of nuclear Hamiltonian
operators is employed. The constructed wave functions are used to calculate ground-state energies,
root-mean-square radii and magnetic dipole moments of selected light nuclei. The theoretical
predictions of the nuclear properties for the selected nuclei give a satisfactory description
of experimental values. The Glauber approximation is combined with the Antisymmetrized
Molecular Dynamics to generate wave functions for scattering states in quasi-elastic scattering
processes. The wave functions are then used to study proton knockout reactions in the 4He
nucleus. The theoretical predictions of the model reproduce experimental observation quite well. / Physics / Ph D. (Physics)
|
Page generated in 0.0655 seconds