• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deer (cervus elaphus) epidermal growth factor-like activity.

January 1986 (has links)
by Kam-ming Ko. / Includes bibliographical references / Thesis (M.Ph.)--Chinese University of Hong Kong, 1986
2

Fluctuating asymmetry of white-tailed deer antlers

DeFreese, Rachel Lynne. January 2007 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2007. / Abstract. Includes bibliographic references (ℓ. 16-21, 50-51)
3

Reproductive Ecology of White-Tailed Deer: Fetal Development and Mate Choice

Morina, Daniel L 10 August 2018 (has links)
Aspects of white-tailed deer (Odocoileus virginianus) reproductive ecology remain understudied. The accuracy of the fetal age estimation equation in current use is unknown. Knowledge is also limited for female choice of secondary sexual traits like antlers and body size. To address previous fetal estimation equations, I developed a model that included litter characteristics using 110 fetuses with known ages of 54 to 175 days. To address female choice, I manipulated antler size and paired large and small males while controlling allometrically related traits. I then allowed estrus females to choose between pairs of segregated males with either large and small antlers or large and small bodies. My predictive fetal aging model generated more accurate fetal ages under a range of sample timing and composition variation. Using various behavioral indications of choice, I demonstrated that females prefer males with larger antlers and lack a preference for body size or age.
4

A technological study of selected osseous artifacts from the Upper Palaeolithic of Britain and Belgium

McComb, Patricia January 1988 (has links)
This thesis records the study of over one thousand selected, bone, antler and ivory artifacts from the Upper Palaeolithic in Britain and Belgium, with particular reference to manufacture. The methods used include the experimental manufacture and use of certain bone and antler artifacts, and the recording of the traces produced. This information is used as a reference collection with which to compare the archaeological material. Both the experimental and the archaeological implements are examined either with the aid of a handlens, or at a variety of magnifications using an optical microscope and a scanning electron microscope. Upper Palaeolithic bone tool types as a whole are considered for comparative purposes, as are some ethnographic artifacts. The artifacts studied here are ordered into twenty-six different tool types, each of which is discussed in turn; this includes a description of the raw materials used, of the identifiable traces of manufacture and their interpretation, and of the identifiable traces of use, and their interpretation. The regional and chronological distribution of the specimens is also considered, as is any variation in each type, for example in size or in the raw materials used. Some regional and chronological patterning is found, but in the absence of reliable contextual information, its interpretation is often speculative. It is concluded that a large scale programme of radiocarbon accelerator dating of actual artifacts is required to solve this problem.
5

Movements, relatedness and modeled genetic manipulation of white-tailed deer

Webb, Stephen Lance 11 December 2009 (has links)
White-tailed deer (Odocoileus virginianus) have been intensively studied across their range. However, many aspects of the white-tailed deer’s ecology have not been studied or are difficult to study. The advent of global positioning system (GPS) collar technology and molecular genetics techniques now allows researchers to collect fine-scale and cryptic phenomena. In addition, selective harvest of male white-tailed deer, based on antler size, has not been critically evaluated. Thus, development and use of quantitative genetics models will be useful for elucidating the effects of selective harvest on mean population antler size. I used GPS collar technology to further understand white-tailed deer movement ecology. First, I determined the efficacy and influence of a high-tensile electric fence (HTEF) on deer movements. The HTEF controlled deer movements when properly maintained and had little influence on deer spatial dynamics, making it a safe and cost-effective alternative to traditional fencing. Second, I studied fine-scale deer movements using GPS collars collecting locations every 15 minutes. Hourly deer movements were greatest in the morning and evening. Parturition and rut influenced movements of females and males, respectively whereas weather and moon phase had minimal influence on movements. Molecular genetics techniques are becoming more widespread and accessible, which may allow insight into the link between genetics and antler size. I found deer in 3 diverse populations from Mississippi, Oklahoma and Texas were relatively heterozygous and unrelated. Groups of deer with similar antler characteristics did not appear to be inbred or share common ancestors. In addition, there was not a strong link between individual multi-locus heterozygosity and antler points or score. Selective harvest has been implicated in causing negative evolutionary and biological responses in several ungulate species. To better determine how selective harvest (i.e., culling; the removal of deer with inferior antlers) affects white-tailed deer antler size, I used quantitative genetic models to simulate response of deer antlers to selection. In simulated controlled breeding situations response to selection was rapid, resulting in improvement in antler size. In simulated free-ranging populations response of antler size to selection was slow and only resulted in minimal increases in antler points after 20 years.
6

Studies on the growth and compositional development of antlers in red deer (Cervus elaphus)

Muir, Paul David January 1985 (has links)
The experiments described in this thesis investigated nutritional and physiological aspects of antler growth in red deer stags. The initial experiment (Section 3) examined the effects of winter nutrition on subsequent antler casting date and velvet antler weight. Mature stags on two different farm types (hill country, Farm H and irrigated lowland, Farm L) were offered three levels of winter nutrition, two levels of a concentrate supplement (ad libitum pellets and 1/2 ad libitum pellets) and a basal hay ration. On both properties liveweight gains occurred in supplemented groups and liveweight losses in unsupplemented groups. At antler casting there were significant differences in liveweight of approximately 10 kg between fully supplemented and unsupplemented groups. Realimentation of winter liveweight losses subsequently occurred so that by the following rut the effects of winter undernutrition had been eliminated. On Farm H poor winter nutrition (hay only) resulted in a significant delay in casting date (13 days) and lower velvet antler yields (0.24 kg), than in stags offered the ad libitum concentrate ration. Stags on Farm H were 13 kg lighter at commencement of the trial than at Farm L and the differences in treatment effects obtained between farms may have been due to differences in body condition at commencement of the trial. An association was demonstrated between liveweight and date of antler casting, with heavier stags casting earlier than lighter stags. There was no effect of age of stag on casting date. Of the liveweights recorded, liveweight prior to the rut showed the best relationship with casting date, possibly because the seasonal nature of liveweight change meant that a weight recorded at this time gave the best indicator of the true frame size of a stag. Both age and liveweight significantly affected velvet antler weight, with increases of velvet antler weight of 0.26 kg between 3 and 4-year-old stags and of 0.30 kg between 4 and 5-year-old stags at the same liveweight. Within an age group velvet weight increased by 0.12 kg for each 10 kg increase in pre-rut liveweight. The experiments described in Section 4 comprised studies on antler growth and composition. In order to obtain data on antler growth and composition individual antlers were removed sequentially from mature red deer stags between 28 and 112 days after casting of hard antlers. Contralateral antlers were removed after stripping of velvet. Wide variation occurred in antler casting date (53 days) compared to date of velvet stripping (24 days). The duration of the period of antler growth may therefore be governed more by date of casting than by date of velvet stripping. Mean duration of the antler growth period was 164 days. Growth in length of the antler appeared to follow a sigmoid curve. However, between 28 and 112 days after casting, rates of elongation were close to linear. Mean length of hard stripped antlers was 0.71 m and between 28 to 112 days after casting mean rate of antler elongation was 0.62 cm/day. Over this period indivdual antlers increased in fresh weight at a rate of 13.7 g/d, with heaviest weight recorded 112 days after antler casting, at approximately 130% of final hard antler weight. Between 28 and 91 days of growth, volume of blood in the antler increased linearly at a rate of 194 ml/kg. Three phases of mineralization were demonstrated in developing antlers. Tips of growing antlers were cartilaginous and poorly mineralized. A zone of mineralization occurred 5.0 to 7.5 cm behind the antler tip which corresponded histologically to the transition from mineralized cartilage to trabecular bone. The second phase of mineralization occurred through continued accretion of trabecular bone in the antler shaft. The third phase, described as "terminal mineralization" in this study, appeared to be associated with a rapid increase in density of cortical bone in the periphery of the antler shaft. Terminal mineralization (between 91 and 112 days after casting of hard antlers) coincided with the slowing of growth in length, a decrease in relative blood volume in the antler and an increase in levels of plasma testosterone. These events occurred close to the summer solstice. At velvet stripping individual antlers had a mean weight of 1.12 kg and contained 81.1% dry matter (DM). Fat free organic matter (FFOM) and ash concentration in DM were 36.6 and 60.0%, respectively. Peak daily rates of FFOM and ash deposition occurred between 91 days and 112 days after casting, at rates of 1.4% of hard antler FFOM and 1.6% of hard antler ash. For a stag producing 2.24 kg of hard antler mean rates of FFOM and ash deposition over this period were 9.3 and 18.3 g/d, respectively. On a whole antler basis calcium concentration in antler ash remained constant, at around 35%. Therefore peak rate of antler calcium deposition would be 6.4 g/d. In the final experiment (Section 5) mature stags were offered a maintenance ration of greenfeed oats during the period of peak calcium requirement for antler growth and the kinetics of calcium metabolism were examined using a radio-isotope (⁴⁵Ca). Rates of faecal endogenous loss were low and at approximately 6.4 mg/kg BW per were half the estimated requirements of ARC (1980) for sheep and cattle. Availability of calcium from greenfeed oats was low (mean, 37%) and less than 30% of total calcium requirements were derived from the diet. Poorly mineralized skeletal bones indicated that the shortfall in antler calcium was derived from the skeleton. In spite of a severely negative calcium balance stags were capable of maintaining high and apparently normal rates of antler calcium deposition (mean, 44 mg/kg BW per day). Antlers appear to be acting as a sink with calcium being irreversibly deposited in the antler and lost to the animal's body. On the assumption therefore that antler calcium behaves like calcium lost during lactation a kinetic model of calcium metabolism in the stag was developed.

Page generated in 0.0458 seconds