Spelling suggestions: "subject:"aphidicolin"" "subject:"humidicola""
1 |
The biotransformation and synthesis of some steroidsYildirim, Kudret January 2001 (has links)
No description available.
|
2 |
The Influence of Endosymbiont Metabolism on the Δ15N Value of the Pea Aphid, Acyrthosiphon pisumKushlan, Philip 24 June 2011 (has links)
The use of stable nitrogen isotope data in ecological and physiological studies is based in the assumption that nitrogen fractionates predictably during metabolism, leading to a broadly conserved pattern whereby consumers are isotopically enriched with respect to their diets. The application of stable isotope data to such studies is limited is by our understanding of the factors in that cause variability in the Δ15N values of consumers. In particular, parasites and fluid-feeders have been shown to demonstrate isotopic depletion with respect to their food sources. One factor that has been suggested to influence the Δ15N values seen in fluid-feeding consumers is the presence of endosymbionts and their contribution to nitrogen metabolism. The experiments described in this thesis directly test the hypothesis that the endosymbiotic bacteria Buchnera aphidicola is influencing the Δ15N value of the pea aphid on host alfalfa plants. Here I find that although aphids cured of their bacterial symbionts are less isotopically depleted than untreated aphids, they are still not enriched with respect to their phloem sap diet, indicating that endosymbiont metabolism alone is not responsible for the isotopic depletion observed in pea aphids. Metabolism of nitrogen in the pea aphid-Buchnera symbiosis has been well described with decades of physiological studies and with the publication of the pea aphid and Buchnera genomes. The two key features of metabolism in the pea aphid-Buchnera symbiosis are the recycling of waste ammonia by the aphid and the upgrading of the nonessential amino acids found in phloem sap to essential amino acids through collaborative metabolism between the pea aphid and Buchnera. Consistent with the described role of Buchnera in nitrogen metabolism, amino acid analyses of symbiotic and aposymbiotic aphids demonstrates an accumulation of the nonessential amino acids glutamine and glutamate and lower amounts of essential amino acids in the aposymbiotic aphids. I tested the influence of dietary amino acid profile on the Δ15N value of pea aphids and found that aphids are only isotopically depleted when they feed on diets with unbalanced amino acid compositions and are isotopically enriched when fed on a diet with a balanced profile of amino acids. I used isotopically labeled fructose to determine whether the difference in Δ15N value of pea aphids on diets of varying amino acid profiles is correlated to the amount of de novo amino acid synthesis occurring in the aphid. I found that there was a significantly higher incorporation of the labeled carbon backbone in the protein of pea aphids feeding on the unbalanced diets, supporting the idea that increased de novo amino acid synthesis are responsible for the differences in Δ15N values among aphids feeding on the two diets. The findings of this study highlight the influence of endosymbionts on the Δ15N values for pea aphids, demonstrate that dietary amino acid composition can influence the Δ15N value of pea aphids through the demand for metabolic upgrading of amino acids, and provide a model for the study of Δ15N values in systems where metabolism has been well characterized by experimental and genomic data.
|
3 |
Variation in the Obligate Symbionts of AphidsVogel, Kevin January 2012 (has links)
Intimate, mutualistic, association with microbes is a common mechanism for organisms to utilize certain niches. Insects are a particularly well-studied group in this respect, frequently forming long-term, obligate associations with symbiotic microbes. These symbioses are often nutritional in nature, with the symbiont providing the host with nutrients that are otherwise unavailable. Aphids are notable for their well-defined relationship with the symbiotic Bacteria Buchnera aphidicola. By synthesizing the amino acids the aphid is unable to produce itself, Buchnera permits its host to feed on plant phloem, which lacks sufficient quantities of these essential nutrients. Buchnera, as with many obligate intracellular symbionts, has a reduced effective population size (Nₑ) due to asexual reproduction and severe population bottlenecks experienced during transmission between generations. The reduction in Nₑ has facilitated the degradation of the symbiont genome through fixation of deleterious mutations via drift. The consequences of accelerated evolutionary rates has been examined primarily through genome sequencing and comparative studies of symbionts from different host species. The work detailed in this dissertation examines the role of deleterious mutations and drift at multiple taxonomic levels. Analysis of aphid amino acid requirements utilizing an artificial diet assay revealed variation in clones of the pea aphid, Acyrthosiphon pisum. In one clone, a mutation in the arginine biosynthesis pathway appears to underlie a host dietary requirement for arginine. Examination of the number of Buchnera within an A. pisum clone also revealed variation in symbiont titer between clones. When compared across F₁ offspring of cross between a low- and a high-titer clone, extensive variation was observed in titer that exceeded variation observed in field-collected clones. No maternal effects were observed, suggesting that Buchnera is not in control of its replication. At a broader taxonomic scale, the replacement of Buchnera in the aphid Cerataphis brasiliensis was examined by sequencing the genome of its fungal symbiont (YLS). The genome of the YLS revealed a much greater metabolic capacity than Buchnera, possibly due to its extracellular habitat. The YLS exhibited signatures of elevated evolutionary rates and intron gain consistent with a reduction in Nₑ due to its symbiotic niche.
|
4 |
ENGINEERING ERWINIA APHIDICOLA LJJL01 - A CATABOLIC POWERHOUSE TO DECONSTRUCT AND UPCYCLE POLYETHYLENE TEREPHTHALATEDissanayake, Lakshika 01 December 2021 (has links)
Synthetic polymers are widely used in basic day to day activities given the wide range of uses associated with their advantageous material properties. Polyethylene terephthalate (PET) is a widely used synthetic polymer with annual production exceeding 73.39 million tons. Out of all the PET material generated, only 30% PET is recycled because current mechanical and chemical recycling methods are not techno-economically viable. This leads to the accumulation of a large amounts of PET waste in the environment causing significant damage to terrestrial and aquatic ecosystems. An alternative to recycling is PET upcycling approaches strategize of converting PET waste into high-value products. This development enables a circular material economy for PET. There are several reports of PET upcycling strategies that describe hybrid-chemo biological approaches. However, efficient whole-cell microbial catalysts capable of selectively degrading PET into its original monomers of ethylene glycol (EG) and terephthalic acid (TPA), and simultaneously upcycling these monomers into high-value compounds is yet to be developed. The selection of an appropriate host strain for plastic upcycling is vital in developing industrially applicable whole-cell biocatalysts. Use of non-model organisms in industrial applications has gained attention over the recent years. The work presented here illustrates comprehensive genomic and phenomic investigations suggesting that the metabolic pathways of the newly identified, Erwinia aphidicola LJJL01, is a promising candidate for upcycling PET-degraded substrates. First, we performed a comprehensive phenomic characterization of E. aphidicola LJJL01 including SEM imaging, pH, optimal temperature, toxicity tolerance, antibiotic tolerance, and fatty acid profile. The metabolic capability of the strain was shown using a substrates utilization assay that includes 29 substrates which comprise C-6 sugars, C-5 sugars, sugar alcohols, acids, alcohols. Secondly, we developed an efficient system for plasmid-based expression and secretion of heterologous proteins. We established synthetic microbiology tools, including CRISPR/Cas9-based genomic editing, to engineer the E. aphidicola LJJL01 strain. Thirdly, we demonstrated successful heterologous expression of PET hydrolyzing enzymes such as PETase and MHETase from Ideonella sakaiensis together with their secretion signal peptides in E. aphidicola LJJL01. We assessed the strain's PET hydrolyzing activity using Bis(2-Hydroxyethyl) terephthalate (BHET), an intermediate molecule of PET as the model substrate. The strain yields 0.88 ±0.10 mol of TPA/mol of BHET in minimal salt medium within 48 hours and outperforms the commonly used platform organisms such as Pseudomonas putida KT2440. We also successfully expressed the thermostable leaf branch compost cutinase (LCC) in E. aphidicola LJJL01. For the first time we were able to demonstrate the synergistic activity of LCC and MHETase enzymes at 30 °C. Since the developed strains didn't show considerable PET degradation at ambient conditions, we developed a novel process to hydrolyze amorphous and commercial grade PET using cell-free supernatant of secreted LCC enzyme at 72°C (the glass transition temperature of PET). Finally, we further engineered the aromatic catabolism of the strain to demonstrate the potential of upcycling PET-degraded TPA into high-value platform chemicals such as cis, cis-muconate. Taken together, we demonstrated E. aphidicola LJJL01, a promising microbial chassis to develop whole-cell biocatalysts to upcycle PET and enable circular material economy.
|
5 |
Développement embryonnaire du puceron Acyrthosiphon pisum : caractérisation de voies métaboliques et gènes clé dans les interactions trophiques avec Buchnera aphidicola / Embryonic development of the pea aphid Acyrthosiphon pisum : characterisation of metabolic pathways and key-genes regulating its trophic interaction with Buchnera aphidicolaRabatel, Andréane 12 December 2011 (has links)
Les pucerons sont parmi les principaux ravageurs des cultures dans les régions tempérées. Leur succès comme parasites de plantes repose sur leur fort potentiel reproductif dû à la parthénogénèse durant le printemps et l'été ainsi qu’à la symbiose avec Buchnera aphidicola. Cette bactérie symbiotique obligatoire fournit aux pucerons les acides aminés essentiels qui sont déficients dans leur alimentation déséquilibrée (la sève élaborée des plantes), et contribue ainsi à leur développement et reproduction. Le premier volet de ce travail de thèse a consisté à déterminer les besoins en acides aminés des différents stades embryonnaires, afin d’identifier des facteurs clé de l’association symbiotique au cours du développement du puceron du pois Acyrthosiphon pisum. Cette étude, conduite sur des embryons prélevés in vivo ou mis en culture in vitro, a révélé i) des exigences métaboliques évoluant au cours de développement du puceron, ii) une dépendance au compartiment maternel pour l’approvisionnement des embryons en acides aminés, et iii) de forts besoins en acides aminés aromatiques, notamment en tyrosine, pour les stades embryonnaires tardifs et le premier stade larvaire précoce. Le deuxième volet de cette thèse a alors eu pour objectif l’identification de gènes cibles à l’intérieur des voies révélées par l’approche métabolique. A l’aide d’une puce à ADN dédiée au génome du d’A. pisum, les profils d’expression des gènes du puceron ont été analysés au cours de son développement embryonnaire. L’analyse fonctionnelle des différents groupes de gènes montre que ceux liés au métabolisme des acides aminés présentent de hauts niveaux d’expression et des variations significatives entre les différents stades. La voie métabolique des acides aminés aromatiques et tout particulièrement les gènes menant à la synthèse de la tyrosine, ainsi que les gènes/voies liés à la formation et à la maturation de la cuticule, sont parmi les plus sollicités chez les embryons tardifs. L’ensemble des résultats obtenus par les approches métabolique et transcriptomique suggère une synthèse et une accumulation de tyrosine au cours du développement embryonnaire, en vue de son utilisation comme précurseur pour la sclérotisation et le tannage cuticulaire après la ponte. Le dernier volet de ce travail de thèse a consisté en une analyse fonctionnelle du rôle du gène ACYPI007803, codant l’enzyme catalysant la synthèse de la tyrosine à partir de la phénylalanine, par la technique d’ARN interférence (RNAi). Une augmentation de la mortalité des larves pondues par les femelles traitées est corrélée à la diminution de l’expression du gène cible dans les compartiments symbiotiques (les chaines embryonnaires et les bactériocytes maternels) et confirme le rôle clé du gène ACYPI007803 dans le développement des embryons chez le puceron du pois. / Aphids are among the main crop pests in temperate regions. Their success as parasites of plants is based on their strong reproductive output due to parthenogenetic reproduction during spring and summer and to their symbiosis with Buchnera aphidicola. This obligatory symbiotic bacterium supplies aphids with essential amino acids poorly available in their unbalanced food (the phloem sap of plants), and so contributes to their development and reproduction. The first part of this work consisted in determining amino acid needs of different embryonic stages, in order to identify key factors of the symbiotic association during the pea aphid development. This study, led on embryos taken in vivo or cultivated in vitro in culture media, allowed us to identify: i) the evolution of metabolic requirements of embryos during development, ii) a dependence of embryos from the maternal compartment for their supply in amino acids, and iii) strong needs in aromatic amino acids, particularly in tyrosine, of the late embryonic stages and the early first larval stage of the pea aphid. The second part of this thesis had for objective the identification of key genes inside pathways revealed by the metabolic approach. Using a dedicated oligonucleotides microarray, the gene expression profiles of the aphid were analysed during the development of the insect. The functional analysis of different gene groups showed that genes involved in amino acids metabolism are globally over-expressed, but they also showed significant transcriptional regulations in the switches between the different stages studied here. The metabolic pathway of aromatic amino acids and particularly the genes involved in the biosynthesis of tyrosine, as well as genes / pathways involved in the formation and the maturation of the cuticle, were among the most solicited in the late embryos. These transcriptomic results, taken together with those obtained by the metabolic approach, suggest that the amino acid tyrosine is synthesized and accumulated by the pea aphid during its embryonic development, in order to later be used as precursor for the sclerotization and the cuticular tanning, processes that occur after insect laying. The last part of this work consisted in a functional analysis of the gene ACYPI007803, coding the enzyme catalysing the tyrosine synthesis from the phenylalanine, by using the RNA interference (RNAi) technique. An increase of the mortality of larvae laid by the treated females was correlated with the decrease of the expression of the target gene in the symbiotic compartments (the embryonic fraction and the maternal bacteriocytes) so confirming the key role of the ACYPI007803 gene in the development of the pea aphid embryos.
|
6 |
Processus cellulaires et moléculaires impliqués dans l’homéostasie bactériocytaire chez le puceron du pois Acyrthosiphon pisum / Cellular and molecular processes involved in bacteriocyte homeostasis in the pea aphid Acyrthosiphon pisumSimonet, Pierre 15 December 2016 (has links)
Les associations symbiotiques constituent un moteur majeur de la diversification écologique et évolutive des organismes métazoaires. Chez les insectes, elles ont conduit, au cours de l’évolution, à l’émergence d’un nouveau type cellulaire spécialisé dans l’hébergement des bactéries symbiotiques, les bactériocytes. Ces cellules demeurent une énigme fascinante de la symbiose, les processus déterminant leur développement, leur morphogenèse et leur dégénérescence restant encore méconnus. Dans cette étude, nous avons utilisé la symbiose entre le puceron Acyrthosiphon pisum et son endosymbiote obligatoire, Buchnera aphidicola, comme système modèle. En combinant des approches inédites de cytométrie en flux et d’imagerie cellulaire, nous avons démontré une régulation fine et coordonnée des dynamiques de croissance et de dégénérescence des bactériocytes et des symbiotes bactériens, en accord avec les besoins physiologiques de l’insecte. De l’embryon à l’âge adulte, les cellules symbiotiques croissent de manière exponentielle, répondant aux besoins nutritionnels de l’hôte qui nécessite pour son développement de grandes quantités d’acides aminés essentiels produits par le métabolisme bactériocytaire. Avec la sénescence du puceron, les bactériocytes diminuent en nombre, en taille et subissent une dégénérescence progressive. Ce processus dégénératif ne montre pas les signes classiques de l’apoptose. Il résulte d’une hypervacuolisation cytoplasmique, dérivée du réticulum endoplasmique, déclenchant une cascade de réponses cellulaires dont l’activation des voies autophagique et lysosomale. Ce phénomène de mort cellulaire non-apoptotique en deux étapes, rappelant la paraptosis, n’a jamais été décrit chez les insectes et sa découverte ouvre la voie à l’étude des régulations agissant sur l’homéostasie bactériocytaire. Dans le dernier volet de cette thèse, nous avons procédé à l’étude fonctionnelle du gène PAH, fortement exprimé dans les bactériocytes et potentiellement impliqué dans la régulation de leur homéostasie. Les résultats obtenus n’ont pas révélé de phénotype bactériocytaire, après ARN interférence, mais ont permis de démontrer un rôle essentiel de ce gène dans la morphogenèse des insectes. / Symbiotic associations constitute a driving force in the ecological and evolutionary diversification of metazoan organisms. Over the evolution, they have led to the emergence, in insects, of a novel eukaryotic cell type, the bacteriocytes, specialized in harboring symbiotic bacteria. These cells constitute a fascinating enigma in cell biology, as the processes underpinning their development, morphogenesis and degeneration remain still unsolved. In my PhD thesis, we have used the nutritional symbiosis between the aphid, Acyrthosiphon pisum, and its obligate endosymbiont, Buchnera aphidicola, as a model system. We have first developed a novel approach for counting symbiotic bacteria, based on flow cytometry, and showed that the endosymbiont population increases exponentially throughout aphid nymphal development, with a growing rate that has never been characterized by indirect molecular techniques. Using histology and imaging techniques, we have shown that bacteriocytes also increase significantly in number and size during nymphal development. Once adulthood is reached, the dynamics of symbiont and host cells is reversed: the number of endosymbionts decreases progressively and bacteriocytes start to degenerate. These results show a coordination of the cellular dynamics between bacteriocytes and primary symbionts, and reveal a fine-tuning of aphid symbiotic cells to the nutritional demand imposed by the host physiology throughout development. Interestingly, the degenerative process that bacteriocytes undergo with aging exhibits morphological features distinct from the evolutionary conserved apoptotic cell deaths. It originates from an extensive ER-derived hypervacuolation, triggering a cascade of cellular stress responses including the activation of autophagy and lysosomal pathways. This stepwise non-apoptotic cell death, sharing several features with paraptosis, has hitherto never been characterized in insects and its discovery opens the way to the identification of the molecular mechanisms acting on bacteriocyte homeostasis. In the last part of this PhD project, we have proceeded to the characterization of the PAH gene functions in aphid physiology, using an RNA interference (RNAi) approach. Our results show that, even though this gene is highly expressed in bacteriocytes, it is not involved in the regulation of their homeostasis. Nevertheless, we have demonstrated a new role for this metabolic gene in insect embryonic development and morphogenesis.
|
7 |
Développement embryonnaire du puceron Acyrthosiphon pisum : caractérisation de voies métaboliques et gènes clé dans les interactions trophiques avec Buchnera aphidicolaRabatel, Andréane 12 December 2011 (has links) (PDF)
Les pucerons sont parmi les principaux ravageurs des cultures dans les régions tempérées. Leur succès comme parasites de plantes repose sur leur fort potentiel reproductif dû à la parthénogénèse durant le printemps et l'été ainsi qu'à la symbiose avec Buchnera aphidicola. Cette bactérie symbiotique obligatoire fournit aux pucerons les acides aminés essentiels qui sont déficients dans leur alimentation déséquilibrée (la sève élaborée des plantes), et contribue ainsi à leur développement et reproduction. Le premier volet de ce travail de thèse a consisté à déterminer les besoins en acides aminés des différents stades embryonnaires, afin d'identifier des facteurs clé de l'association symbiotique au cours du développement du puceron du pois Acyrthosiphon pisum. Cette étude, conduite sur des embryons prélevés in vivo ou mis en culture in vitro, a révélé i) des exigences métaboliques évoluant au cours de développement du puceron, ii) une dépendance au compartiment maternel pour l'approvisionnement des embryons en acides aminés, et iii) de forts besoins en acides aminés aromatiques, notamment en tyrosine, pour les stades embryonnaires tardifs et le premier stade larvaire précoce. Le deuxième volet de cette thèse a alors eu pour objectif l'identification de gènes cibles à l'intérieur des voies révélées par l'approche métabolique. A l'aide d'une puce à ADN dédiée au génome du d'A. pisum, les profils d'expression des gènes du puceron ont été analysés au cours de son développement embryonnaire. L'analyse fonctionnelle des différents groupes de gènes montre que ceux liés au métabolisme des acides aminés présentent de hauts niveaux d'expression et des variations significatives entre les différents stades. La voie métabolique des acides aminés aromatiques et tout particulièrement les gènes menant à la synthèse de la tyrosine, ainsi que les gènes/voies liés à la formation et à la maturation de la cuticule, sont parmi les plus sollicités chez les embryons tardifs. L'ensemble des résultats obtenus par les approches métabolique et transcriptomique suggère une synthèse et une accumulation de tyrosine au cours du développement embryonnaire, en vue de son utilisation comme précurseur pour la sclérotisation et le tannage cuticulaire après la ponte. Le dernier volet de ce travail de thèse a consisté en une analyse fonctionnelle du rôle du gène ACYPI007803, codant l'enzyme catalysant la synthèse de la tyrosine à partir de la phénylalanine, par la technique d'ARN interférence (RNAi). Une augmentation de la mortalité des larves pondues par les femelles traitées est corrélée à la diminution de l'expression du gène cible dans les compartiments symbiotiques (les chaines embryonnaires et les bactériocytes maternels) et confirme le rôle clé du gène ACYPI007803 dans le développement des embryons chez le puceron du pois.
|
Page generated in 0.0563 seconds