1 |
Detekce spánkové apnoe / Sleep apnea detectionHastík, Matěj January 2015 (has links)
This master‘s thesis deals with a detailed description of sleep apnea and methods of detection of sleep apnea. The first part of the work is focused on the physiology of sleep, sleep apnea itself, its distribution, symptoms, risk factors and treatment. The next part of the work deals with polysomnographic examination and methods for analysis of polysomnographic data. The last part is devoted to the procedure design for detecting sleep apnea by using only one kind of signal and by using more kinds of signals, implementation of these proposals, their testing on real data, evaluating the detection performance and comparing the results with data available in the literature.
|
2 |
NONINVASIVE MEASUREMENT OF HEARTRATE, RESPIRATORY RATE, AND BLOOD OXYGENATION THROUGH WEARABLE DEVICESJason David Ummel (10724028) 29 April 2021 (has links)
<p>The last two decades have shown a boom in the field of
wearable sensing technology. Particularly in the consumer industry, growing
trends towards personalized health have pushed new devices to report many vital
signs, with a demand for high accuracy and reliability. The most common
technique used to gather these vitals is photoplethysmography or PPG. PPG devices
are ideal for wearable applications as they are simple, power-efficient, and
can be implemented on almost any area of the body. Traditionally PPGs were
utilized for capturing just heart rate, however, recent advancements in
hardware and digital processing have led to other metrics including respiratory
rate (RR) and peripheral oxygen saturation (SpO2), to be reported as well. Our
research investigates the potential for wearable devices to be used for
outpatient apnea monitoring, and particularly the ability to detect opioid
misuse resulting in respiratory depression. Ultimately, the long-term goal of
this work is to develop a wearable device that can be used in the
rehabilitation process to ensure both accountability and safety of the wearer.
This document details contributions towards this goal through the design,
development, and evaluation of a device called “Kick Ring”. Primarily, we
investigate the ability of Kick Ring to record heartrate (HR), RR, and SpO2. Moreover,
we show that the device can calculate RR in real time and can provide an
immediate indication of abnormal events such as respiratory depression. Finally,
we explore a novel method for reporting apnea events through the use of several
PPG characteristics. Kick Ring reliably gathers respiratory metrics and offers
a combination of features that does not exist in the current wearables space.
These advancements will help to move the field forward, and eventually aid in
early detection of life-threatening events.</p>
|
Page generated in 0.0748 seconds