• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1564
  • 741
  • 292
  • 173
  • 127
  • 72
  • 70
  • 54
  • 34
  • 33
  • 20
  • 13
  • 12
  • 12
  • 12
  • Tagged with
  • 3737
  • 1210
  • 822
  • 473
  • 461
  • 328
  • 311
  • 274
  • 242
  • 230
  • 226
  • 214
  • 207
  • 185
  • 179
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Regulation of proliferation and apoptosis by peroxisome proliferator-activated receptor gamma (PPAR[gamma]) in human thyroid cancer cells.

January 2008 (has links)
Ho Wing Man. / On t.p. "gamma" appears as the Greek letter. / Thesis submitted in: December 2007. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 95-106). / Abstracts in English and Chinese. / ABSTRACT --- p.I / 摘要 --- p.III / ACKNOWLEDGMENTS --- p.V / ABBREVIATIONS --- p.VI / LIST OF FIGURES --- p.IX / LIST OF TABLES --- p.X / CONTENTS --- p.XII / Chapter CHAPTER ONÉؤ --- GENERAL INTRODUCTION --- p.1 / Chapter 1.1 --- Background --- p.2 / Chapter 1.1.1 --- Thyroid cancer --- p.2 / Chapter 1.1.2 --- Apoptosis and thyroid cancer --- p.4 / Chapter 1.2 --- Estrogen receptors and apoptosis --- p.5 / Chapter 1.2.1 --- Estrogen receptor-α (ERα) and estrogen receptor-β (ERβ) --- p.5 / Chapter 1.2.2 --- Differential roles of estrogen receptor-α(ERα) and estrogen receptor-β (ERβ) in apoptosis --- p.6 / Chapter 1.2.3 --- Bcl-2 family --- p.8 / Chapter 1.3 --- Peroxisome proliferator-activated receptor-γ (PPARγ) --- p.9 / Chapter 1.3.1 --- Molecular aspects of PPAR --- p.9 / Chapter 1.3.2 --- PPAR/RXR complex --- p.13 / Chapter 1.3.3 --- PPARγ ligands --- p.16 / Chapter 1.3.4 --- PPARγ and apoptosis in thyroid cancer --- p.19 / Chapter 1.3.5 --- PPARγ ligands-mediated apoptosis pathway --- p.21 / Chapter 1.4 --- Previous results from our laboratory --- p.25 / Chapter 1.5 --- Summary of previous studies --- p.27 / Chapter 1.6 --- Perspectives --- p.28 / Chapter 1.7 --- Objectives of this project --- p.29 / Chapter CHAPTER TWÓؤ --- GENERAL MATERIALS AND METHODS --- p.30 / Chapter 2.1 --- Materials --- p.31 / Chapter 2.1.1 --- Cell lines --- p.31 / Chapter 2.1.2 --- Plasmid vectors used in this study --- p.31 / Chapter 2.1.3 --- Antibodies --- p.32 / Chapter 2.1.4 --- Culture media and transfection reagents --- p.32 / Chapter 2.1.5 --- Materials for protein manipulation --- p.33 / Chapter 2.1.6 --- Drugs for treatment --- p.34 / Chapter 2.1.7 --- Kits --- p.35 / Chapter 2.1.8 --- Instruments --- p.35 / Chapter 2.2 --- Methods --- p.36 / Chapter 2.2.1 --- Cell culture --- p.36 / Chapter 2.2.2 --- Cell viability analysis --- p.36 / Chapter 2.2.3 --- Preparation of protein extract --- p.37 / Chapter 2.2.4 --- Determination of the concentration of target protein --- p.37 / Chapter 2.2.5 --- Gel electrophoresis and protein transfer --- p.38 / Chapter 2.2.6 --- Immunoblotting --- p.39 / Chapter 2.2.7 --- Apoptosis detected by Cell Death ELISAplus --- p.41 / Chapter 2.2.8 --- PPARγ-ligand Enzyme Immunoassay --- p.45 / Chapter 2.2.8.1 --- 15d-PGJ3 Enzyme Immunoassay --- p.45 / Chapter 2.2.8.2 --- 15(S)-HETE Enzyme Immunoassay --- p.46 / Chapter 2.2.8.3 --- 13(S)-HODE Enzyme Immunoassay --- p.46 / Chapter 2.2.9 --- Transient tranfection and luciferase activity assay --- p.47 / Chapter 2.2.10 --- Statistical Analysis --- p.52 / Chapter CHAPTER THREÉؤ --- ESTROGEN RECEPTORa (ERa) AND ESTROGEN RECEPTORP(ERP) MEDIATE THE PROLIFERATION AND APOPTOSIS OF HUMAN THYROID PAPILLARY CARCINOMA CELLS --- p.53 / Chapter 3.1 --- Introduction --- p.54 / Chapter 3.2 --- Materials and Methods --- p.56 / Chapter 3.2.1 --- Cell culture and treatment --- p.56 / Chapter 3.2.2 --- Western Blot --- p.56 / Chapter 3.2.3 --- Cell proliferation determined by MTT assay --- p.57 / Chapter 3.2.4 --- Apoptosis detected by Cell Death ELISAplus assay --- p.58 / Chapter 3.3 --- Results --- p.59 / Chapter 3.3.1 --- "The expression of ERα, ERβ and PPARγ in NPA, FRO, ARO and WRO thyroid cancer cell lines" --- p.59 / Chapter 3.2.2 --- Effects of PPT and DPN on cell viability --- p.61 / Chapter 3.3.3 --- Apoptotic cells quantification by Cell Death ELISAplus assay --- p.64 / Chapter 3.4 --- Discussion --- p.67 / Chapter CHAPTER FOUŔؤ --- THE RELATIONSHIP BETWEEN PPARγ AND ESTROGEN RECEPTOR AND THE REGULATION OF THE APOPTOSIS IN THYROID CANCER CELL LINES --- p.70 / Chapter 4.1 --- Introduction --- p.71 / Chapter 4.2 --- Material and Methods --- p.74 / Chapter 4.2.1 --- Transient transfection --- p.74 / Chapter 4.2.2 --- Luciferase assay --- p.74 / Chapter 4.2.3 --- 15d-PGJ2 ELISA assay --- p.75 / Chapter 4.2.4 --- 15S-HETE ELISA assay --- p.76 / Chapter 4.2.5 --- 13S-HODE ELISA assay --- p.77 / Chapter 4.3 --- Results --- p.78 / Chapter 4.3.1 --- "PPT, ERα-agonist, increased thyroid cancer cell proliferation and caused the decrease the level of PPARγ ligands" --- p.78 / Chapter 4.3.2 --- "DPN, ERβ-agonist, inhibited thyroid cancer cell proliferation, induced apoptosis and caused the increase the level of PPARγ ligands" --- p.83 / Chapter 4.3.3 --- PPT did not alter the transcriptional activity of PPARγ --- p.88 / Chapter 4.4 --- Discussion --- p.90 / Chapter CHAPTER FIVÉؤ --- CONCLUSIONS AND FUTURE PROSPECT --- p.92 / Chapter 5.1 --- Summary of results --- p.93 / Chapter 5.2 --- Conclusion --- p.94 / Chapter 5.3 --- Future prospects --- p.94 / REFERENCE LIST --- p.95
262

The inhibitory effect of genistein on the recovery from apoptotic event in cancer cells. / CUHK electronic theses & dissertations collection

January 2012 (has links)
根據文獻研究記載,化療藥物可誘導癌細胞的凋亡,這是公認的化療療法的主要治療效果。作為一種程式性細胞死亡,積累的實驗證據表明,誘導所致的細胞凋亡是可逆轉的。這就引出了對於細胞凋亡恢復及其調節機制的相關問題。 / 在這項研究中,我們證明了在質膜不對稱的散失和半胱天冬酶(caspase)啟動後,HeLa細胞的凋亡的啟動可逆轉。我們發現,除了被廣泛研究的抗增殖作用外,金雀異黃素(genistein)可抑制細胞凋亡的復蘇。即時定量PCR發現抗凋亡基因MDM2和XIAP在凋亡逆轉過程中表達水準上調,金雀異黃素可抑制其表達水準的上調。金雀異黃素,MDM2蛋白抑制劑和XIAP抑制劑的利用,造成復原細胞內持續的半胱天冬酶活性和增強的細胞死亡效果。然而,半胱天冬酶抑制劑並不能挽救金雀異黃素的抑制作用。流式細胞儀的研究表明,金雀異黃素可以導致凋亡逆轉細胞持久磷脂醯絲氨酸(PS)外化和逆轉細胞的細胞壞死。抑制半胱天冬酶活性將金雀異黃素的主要作用轉移到壞死效果。這些結果揭示了金雀異黃素抑制細胞凋亡逆轉的兩個可能的機制。 / 金雀異黃素能維持現有的細胞凋亡信號從而增強細胞凋亡。它也可以破壞凋亡恢復過程,導致繼發性壞死。金雀異黃素對於細胞凋亡逆轉的抑制可與常規化療相結合,以提高治療結果. / It is well documented that chemotherapeutical agents could induce apoptosis of cancer cells, which is recognized as a major treatment effect of chemotherapy. Accumulating evidence indicates that chemopreventive agents like soybean isoflavone genistein could potentiate the antitumor effect of chemotherapeutic drugs both in vivo and in vitro. The mechanistic basis of this augmentation effect by genistein remains to be fully elucidated. / In this study, we demonstrated while low-concentration ethanol stressed cancer cells could recover, the presence of genistein promoted the cell death of stressed cancer cells that displayed apoptotic features. In HeLa cells, quantitative real-time PCR revealed the up-regulation of anti-apoptotic genes MDM2 and XIAP during the recovery process, and genistein suppressed their expression. The application of genistein, MDM2 inhibitor and XIAP inhibitor to the recovering HeLa cells caused persistent caspase activity and enhanced cell death. However, the death-promoting effect of genistein was not rescued by caspase inhibitor. Flow cytometry study indicated that genistein treatment could lead to persistent phosphatidylserine (PS) externalization and necrotic events in the recovering HeLa cells. Caspase activity inhibition shifted the major effect of genistein to secondary necrosis. / These results suggested two possible mechanisms through which genistein promoted cell death in stressed HeLa cells. Genistein could maintain the existing apoptotic signal to enhance apoptotic cell death. It could also disrupt the recovering process in caspase-independent manner, which lead to secondary necrosis. These effects may account for the enhanced antitumor effect of chemotherapeutic drugs when they were combined with genistein. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Xie, Xin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 79-90). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in also in Chinese. / Cover Page / Statement --- p.i / Thesis Committee members --- p.ii / Acknowledgements --- p.iii / Abstract --- p.iv / Table of contents --- p.vi / List of abbreviations --- p.ix / List of figures and tables --- p.xi / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Introduction to general cancer biology --- p.1 / Chapter 1.1.1 --- Overview of cancer --- p.1 / Chapter 1.1.1.1 --- Classification of cancer --- p.1 / Chapter 1.1.1.2 --- Risk factors of carcinogenesis --- p.2 / Chapter 1.1.1.3 --- Cancer prevention and therapies --- p.4 / Chapter 1.1.2 --- Models of cancer development --- p.6 / Chapter 1.1.2.1 --- Multistage model of carcinogenesis --- p.6 / Chapter 1.1.2.2 --- Colorectal cancer as an example of multistep / multigene carcinogenesis --- p.7 / Chapter 1.1.2.3 --- Driving force for cancer development --- p.9 / Chapter 1.1.3 --- Properties of cancer cells --- p.11 / Chapter 1.2 --- Apoptosis and its roles in cancer development and treatment --- p.14 / Chapter 1.2.1 --- Overview of apoptosis --- p.14 / Chapter 1.2.2 --- Molecular mechanism of apoptosis --- p.15 / Chapter 1.2.3 --- Positive and negative regulation of apoptosis --- p.18 / Chapter 1.2.4 --- Apoptotic defects in cancer development --- p.20 / Chapter 1.2.5 --- Apoptosis in cancer treatment --- p.23 / Chapter 1.3 --- The reversibility of apoptotic events --- p.25 / Chapter 1.4 --- Genistein and its relevance to cancer therapy --- p.27 / Chapter 1.5 --- Objectives of the study --- p.29 / Chapter Chapter 2 --- Materials and Methods --- p.30 / Chapter 2.1 --- Materials --- p.30 / Chapter 2.1.1 --- Cancer cell lines --- p.30 / Chapter 2.1.2 --- Cell culture media and additives --- p.30 / Chapter 2.1.3 --- Biochemical kits --- p.30 / Chapter 2.1.4 --- Chemicals and reagents --- p.30 / Chapter 2.1.5 --- Antibodies --- p.31 / Chapter 2.1.6 --- Primers used for quantitative real-time PCR --- p.32 / Chapter 2.1.7 --- Buffers and solutions --- p.32 / Chapter 2.2 --- Methods and procedures --- p.33 / Chapter 2.2.1 --- Cell culture establishment and cryopreservation --- p.33 / Chapter 2.2.2 --- Living cell staining and imaging --- p.34 / Chapter 2.2.3 --- MTT cell viability assay --- p.34 / Chapter 2.2.4 --- BrdU cell proliferation assay --- p.35 / Chapter 2.2.5 --- LDH cytotoxicity assay --- p.35 / Chapter 2.2.6 --- Quantitative real-time PCR --- p.36 / Chapter 2.2.7 --- Western blotting --- p.37 / Chapter 2.2.8 --- Annexin V/ Propidium Iodide Assay --- p.38 / Chapter 2.2.9 --- Trypan Blue Dye Exclusion Assay --- p.39 / Chapter 2.2.10 --- Cleaved-Caspase 3 Immunostaining --- p.39 / Chapter 2.2.11 --- Statistical Analysis --- p.39 / Chapter Chapter 3 --- Results --- p.40 / Chapter 3.1 --- Low concentration ethanol stressed cancer cells displayed apoptotic features and the stressed cell could recover after stress removal --- p.40 / Chapter 3.1.1 --- Morphological changes and apoptotic marker activation in low concentration ethanol stress --- p.40 / Chapter 3.1.2 --- In situ study of morphological changes and caspase 3 activation in HeLa --- p.44 / Chapter 3.2 --- Genistein promoted the cell death of stressed cancer cells at non-cytotoxic concentration towards unstressed cells --- p.46 / Chapter 3.2.1 --- Dose-dependent response of genistein on stressed and unstressed cells --- p.46 / Chapter 3.2.2 --- In HeLa cells, genistein suppressed the recovery from stress treatment at non-cytotoxic concentration --- p.48 / Chapter 3.2.3 --- Genistein promoted both apoptosis and necrosis in stressed cells. . --- p.49 / Chapter 3.3 --- Genes involved in the recovery from stress treatment were influenced by genistein --- p.53 / Chapter 3.3.1 --- Stressed HeLa cells were more sensitive to the inhibition of de novo synthesis --- p.53 / Chapter 3.3.2 --- Expression profiles of genes involved in recovery and the influence of genistein --- p.55 / Chapter 3.4 --- Like genistein, MDM2 and XIAP inhibitor potentiated the cell death and caused persistent caspase-3 activity in stressed cells --- p.58 / Chapter 3.4.1. --- Stressed HeLa cells were much more sensitive to the inhibition of XIAP and MDM2 --- p.58 / Chapter 3.4.2 --- The presence of inhibitor at non-cytotoxic concentration to unstressed cells suppressed the recovery of the stressed cells --- p.60 / Chapter 3.4.3 --- Genistein, MDM2 inhibitor and XIAP inhibitor caused persistent apoptotic signals in recovering cells. --- p.61 / Chapter 3.5 --- The death-promoting effect by genistein could be caspase-independent --- p.64 / Chapter 3.6 --- Caspase activity abrogation shifted genistein’s action profile --- p.66 / Chapter Chapter 4 --- Discussion and prospect --- p.70 / Chapter 4.1 --- The apoptotic features were induced by low concentration ethanol stress --- p.70 / Chapter 4.2 --- The apoptotic features caused by ethanol stress were reversible --- p.71 / Chapter 4.3 --- Genistein showed death-promoting effects on the recovering cells --- p.72 / Chapter 4.4 --- The genes (XIAP and MDM2) that were involved in the recovery process may function to terminate apoptotic signal --- p.73 / Chapter 4.5 --- Genistein suppressed the upregulation of anti-apoptotic genes and promoted the expression of pro-apoptotic genes --- p.74 / Chapter 4.6 --- The XIAP and MDM2 activity were essential for the recovery from stress --- p.75 / Chapter 4.7 --- Caspase inhibition increased the secondary necrosis in recovering cells with genistein treatment --- p.76 / Chapter 4.8 --- Hypothetic mechanism of genistein’s inhibitory effect on the recovery of stressed cells --- p.77 / Chapter 4.9 --- Summary and prospects --- p.78 / Reference list --- p.79
263

Lithium-induced apoptosis in WIL-2 lymphoma cells

Molepo, Lefoka Calvyn January 2004 (has links)
Thesis (M.Sc. (Biochemistry)) --University of Limpopo, 2004 / Refer to the document / National Research Foundation (NRF) and the UNlN Research Commitee
264

Regulation of Skeletal Muscle Formation and Regeneration by the Cellular Inhibitor of Apoptosis 1 (cIAP1) Protein

Enwere, Emeka K. 01 June 2011 (has links)
The inhibitor of apoptosis (IAP) proteins traditionally regulate programmed cell death by binding to and inhibiting caspases. Recent studies have uncovered a variety of alternate cellular roles for several IAP family members. The cellular inhibitor of apoptosis 1 (cIAP1) protein, for instance, regulates different axes of the NF-κB signalling pathway. Given the extensive functions of NF-κB signalling in muscle differentiation and regeneration, I asked if cIAP1 also plays critical roles in skeletal muscle myogenesis. In a primary myoblast cell-culture system, genetic and pharmacological approaches revealed that loss of cIAP1 dramatically increases the fusion of myoblasts into myotubes. NF-κB signalling occurs along a classical and an alternative pathway, both of which are highly active in cIAP1-/- myoblasts. Suppression of the alternative pathway attenuates myotube fusion in wildtype and cIAP1-/- myoblasts. Conversely, constitutive activation of the alternative pathway increases myoblast fusion in wildtype myoblasts. cIAP1-/- mice have greater muscle weight and size than wildtypes, as well as an increased number of muscle stem cells. These results identify cIAP1 as a regulator of myogenesis through its modulation of classical and alternative NF-κB signalling pathways. Loss of the structural protein dystrophin in the mdx mouse model of Duchenne muscular dystrophy leads to chronic degeneration of skeletal muscle. The muscle pathology is strongly influenced by NF-κB signaling. Given the roles demonstrated for cIAP1 in cell culture and in vivo, I asked whether loss of cIAP1 would influence muscle pathology in the mdx mouse. To address this question, double-mutant mice were bred lacking both cIAP1 and dystrophin (cIAP1-/-;mdx). Histological analyses revealed that double-mutant mice exhibited reduced indications of damage on several measures, as compared to single-mutant (cIAP1+/+;mdx) controls. Unexpectedly, these reductions were seen in the “slow-twitch” soleus muscle but not in the “fast-twitch” extensor digitorum longus (EDL) muscle. The improvements in pathology of double-mutant solei were associated with reductions in muscle infiltration by CD68-expressing macrophages. Finally, the double-mutant mice exhibited improved endurance and resistance to damage during treadmill-running exercise. Taken together, these results suggest that loss of cIAP1, through its multiple regulatory functions, acts to improve myogenesis and increase muscle resistance to damage.
265

Regulation of Skeletal Muscle Formation and Regeneration by the Cellular Inhibitor of Apoptosis 1 (cIAP1) Protein

Enwere, Emeka K. 01 June 2011 (has links)
The inhibitor of apoptosis (IAP) proteins traditionally regulate programmed cell death by binding to and inhibiting caspases. Recent studies have uncovered a variety of alternate cellular roles for several IAP family members. The cellular inhibitor of apoptosis 1 (cIAP1) protein, for instance, regulates different axes of the NF-κB signalling pathway. Given the extensive functions of NF-κB signalling in muscle differentiation and regeneration, I asked if cIAP1 also plays critical roles in skeletal muscle myogenesis. In a primary myoblast cell-culture system, genetic and pharmacological approaches revealed that loss of cIAP1 dramatically increases the fusion of myoblasts into myotubes. NF-κB signalling occurs along a classical and an alternative pathway, both of which are highly active in cIAP1-/- myoblasts. Suppression of the alternative pathway attenuates myotube fusion in wildtype and cIAP1-/- myoblasts. Conversely, constitutive activation of the alternative pathway increases myoblast fusion in wildtype myoblasts. cIAP1-/- mice have greater muscle weight and size than wildtypes, as well as an increased number of muscle stem cells. These results identify cIAP1 as a regulator of myogenesis through its modulation of classical and alternative NF-κB signalling pathways. Loss of the structural protein dystrophin in the mdx mouse model of Duchenne muscular dystrophy leads to chronic degeneration of skeletal muscle. The muscle pathology is strongly influenced by NF-κB signaling. Given the roles demonstrated for cIAP1 in cell culture and in vivo, I asked whether loss of cIAP1 would influence muscle pathology in the mdx mouse. To address this question, double-mutant mice were bred lacking both cIAP1 and dystrophin (cIAP1-/-;mdx). Histological analyses revealed that double-mutant mice exhibited reduced indications of damage on several measures, as compared to single-mutant (cIAP1+/+;mdx) controls. Unexpectedly, these reductions were seen in the “slow-twitch” soleus muscle but not in the “fast-twitch” extensor digitorum longus (EDL) muscle. The improvements in pathology of double-mutant solei were associated with reductions in muscle infiltration by CD68-expressing macrophages. Finally, the double-mutant mice exhibited improved endurance and resistance to damage during treadmill-running exercise. Taken together, these results suggest that loss of cIAP1, through its multiple regulatory functions, acts to improve myogenesis and increase muscle resistance to damage.
266

Antitumor activity of antimalarials in human breast cancer cells

Zhou, Qun. January 2002 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains viii, 146 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 125-142).
267

Regulation of Skeletal Muscle Formation and Regeneration by the Cellular Inhibitor of Apoptosis 1 (cIAP1) Protein

Enwere, Emeka K. 01 June 2011 (has links)
The inhibitor of apoptosis (IAP) proteins traditionally regulate programmed cell death by binding to and inhibiting caspases. Recent studies have uncovered a variety of alternate cellular roles for several IAP family members. The cellular inhibitor of apoptosis 1 (cIAP1) protein, for instance, regulates different axes of the NF-κB signalling pathway. Given the extensive functions of NF-κB signalling in muscle differentiation and regeneration, I asked if cIAP1 also plays critical roles in skeletal muscle myogenesis. In a primary myoblast cell-culture system, genetic and pharmacological approaches revealed that loss of cIAP1 dramatically increases the fusion of myoblasts into myotubes. NF-κB signalling occurs along a classical and an alternative pathway, both of which are highly active in cIAP1-/- myoblasts. Suppression of the alternative pathway attenuates myotube fusion in wildtype and cIAP1-/- myoblasts. Conversely, constitutive activation of the alternative pathway increases myoblast fusion in wildtype myoblasts. cIAP1-/- mice have greater muscle weight and size than wildtypes, as well as an increased number of muscle stem cells. These results identify cIAP1 as a regulator of myogenesis through its modulation of classical and alternative NF-κB signalling pathways. Loss of the structural protein dystrophin in the mdx mouse model of Duchenne muscular dystrophy leads to chronic degeneration of skeletal muscle. The muscle pathology is strongly influenced by NF-κB signaling. Given the roles demonstrated for cIAP1 in cell culture and in vivo, I asked whether loss of cIAP1 would influence muscle pathology in the mdx mouse. To address this question, double-mutant mice were bred lacking both cIAP1 and dystrophin (cIAP1-/-;mdx). Histological analyses revealed that double-mutant mice exhibited reduced indications of damage on several measures, as compared to single-mutant (cIAP1+/+;mdx) controls. Unexpectedly, these reductions were seen in the “slow-twitch” soleus muscle but not in the “fast-twitch” extensor digitorum longus (EDL) muscle. The improvements in pathology of double-mutant solei were associated with reductions in muscle infiltration by CD68-expressing macrophages. Finally, the double-mutant mice exhibited improved endurance and resistance to damage during treadmill-running exercise. Taken together, these results suggest that loss of cIAP1, through its multiple regulatory functions, acts to improve myogenesis and increase muscle resistance to damage.
268

Cell interactions in the CNS and their consequences for neuronal apoptosis /

Berglund, Mikaela, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 4 uppsatser.
269

A study of the relationship of apoptosis and proliferation to local recurrence in breast cancer /

Daniel, Syble P. S., January 1999 (has links)
Thesis (M.Sc.), Memorial University of Newfoundland, Faculty of Medicine, 2000. / Restricted until June 2001. Typescript. Bibliography: leaves 109-129.
270

The role of ELMO proteins in the removal of apoptotic cells /

deBakker, Colin David. January 2006 (has links)
Thesis (Ph. D.)--University of Virginia, 2006. / Includes bibliographical references. Also available online through Digital Dissertations.

Page generated in 0.032 seconds