• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 28
  • 18
  • Tagged with
  • 221
  • 221
  • 191
  • 189
  • 125
  • 99
  • 97
  • 97
  • 85
  • 79
  • 79
  • 75
  • 75
  • 75
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Weight parameterizations in deep neural networks / Paramétrisation des poids des réseaux de neurones profonds

Zagoruyko, Sergey 07 September 2018 (has links)
Les réseaux de neurones multicouches ont été proposés pour la première fois il y a plus de trois décennies, et diverses architectures et paramétrages ont été explorés depuis. Récemment, les unités de traitement graphique ont permis une formation très efficace sur les réseaux neuronaux et ont permis de former des réseaux beaucoup plus grands sur des ensembles de données plus importants, ce qui a considérablement amélioré le rendement dans diverses tâches d'apprentissage supervisé. Cependant, la généralisation est encore loin du niveau humain, et il est difficile de comprendre sur quoi sont basées les décisions prises. Pour améliorer la généralisation et la compréhension, nous réexaminons les problèmes de paramétrage du poids dans les réseaux neuronaux profonds. Nous identifions les problèmes les plus importants, à notre avis, dans les architectures modernes : la profondeur du réseau, l'efficacité des paramètres et l'apprentissage de tâches multiples en même temps, et nous essayons de les aborder dans cette thèse. Nous commençons par l'un des problèmes fondamentaux de la vision par ordinateur, le patch matching, et proposons d'utiliser des réseaux neuronaux convolutifs de différentes architectures pour le résoudre, au lieu de descripteurs manuels. Ensuite, nous abordons la tâche de détection d'objets, où un réseau devrait apprendre simultanément à prédire à la fois la classe de l'objet et l'emplacement. Dans les deux tâches, nous constatons que le nombre de paramètres dans le réseau est le principal facteur déterminant sa performance, et nous explorons ce phénomène dans les réseaux résiduels. Nos résultats montrent que leur motivation initiale, la formation de réseaux plus profonds pour de meilleures représentations, ne tient pas entièrement, et des réseaux plus larges avec moins de couches peuvent être aussi efficaces que des réseaux plus profonds avec le même nombre de paramètres. Dans l'ensemble, nous présentons une étude approfondie sur les architectures et les paramétrages de poids, ainsi que sur les moyens de transférer les connaissances entre elles / Multilayer neural networks were first proposed more than three decades ago, and various architectures and parameterizations were explored since. Recently, graphics processing units enabled very efficient neural network training, and allowed training much larger networks on larger datasets, dramatically improving performance on various supervised learning tasks. However, the generalization is still far from human level, and it is difficult to understand on what the decisions made are based. To improve on generalization and understanding we revisit the problems of weight parameterizations in deep neural networks. We identify the most important, to our mind, problems in modern architectures: network depth, parameter efficiency, and learning multiple tasks at the same time, and try to address them in this thesis. We start with one of the core problems of computer vision, patch matching, and propose to use convolutional neural networks of various architectures to solve it, instead of manual hand-crafting descriptors. Then, we address the task of object detection, where a network should simultaneously learn to both predict class of the object and the location. In both tasks we find that the number of parameters in the network is the major factor determining it's performance, and explore this phenomena in residual networks. Our findings show that their original motivation, training deeper networks for better representations, does not fully hold, and wider networks with less layers can be as effective as deeper with the same number of parameters. Overall, we present an extensive study on architectures and weight parameterizations, and ways of transferring knowledge between them
22

Learning Deep Representations : Toward a better new understanding of the deep learning paradigm / Apprentissage de représentations profondes : vers une meilleure compréhension du paradigme d'apprentissage profond

Arnold, Ludovic 25 June 2013 (has links)
Depuis 2006, les algorithmes d’apprentissage profond qui s’appuient sur des modèles comprenant plusieurs couches de représentations ont pu surpasser l’état de l’art dans plusieurs domaines. Les modèles profonds peuvent être très efficaces en termes du nombre de paramètres nécessaires pour représenter des opérations complexes. Bien que l’entraînement des modèles profonds ait été traditionnellement considéré comme un problème difficile, une approche réussie a été d’utiliser une étape de pré-entraînement couche par couche, non supervisée, pour initialiser des modèles profonds supervisés. Tout d’abord, l’apprentissage non-supervisé présente de nombreux avantages par rapport à la généralisation car il repose uniquement sur des données non étiquetées qu’il est facile de trouver. Deuxièmement, la possibilité d’apprendre des représentations couche par couche, au lieu de toutes les couches à la fois, améliore encore la généralisation et réduit les temps de calcul. Cependant, l’apprentissage profond pose encore beaucoup de questions relatives à la consistance de l’apprentissage couche par couche, avec de nombreuses couches, et à la difficulté d’évaluer la performance, de sélectionner les modèles et d’optimiser la performance des couches. Dans cette thèse, nous examinons d’abord les limites de la justification variationnelle actuelle pour l’apprentissage couche par couche qui ne se généralise pas bien à de nombreuses couches et demandons si une méthode couche par couche peut jamais être vraiment consistante. Nous constatons que l’apprentissage couche par couche peut en effet être consistant et peut conduire à des modèles génératifs profonds optimaux. Pour ce faire, nous introduisons la borne supérieure de la meilleure probabilité marginale latente (BLM upper bound), un nouveau critère qui représente la log-vraisemblance maximale d’un modèle génératif profond quand les couches supérieures ne sont pas connues. Nous prouvons que la maximisation de ce critère pour chaque couche conduit à une architecture profonde optimale, à condition que le reste de l’entraînement se passe bien. Bien que ce critère ne puisse pas être calculé de manière exacte, nous montrons qu’il peut être maximisé efficacement par des auto-encodeurs quand l’encodeur du modèle est autorisé à être aussi riche que possible. Cela donne une nouvelle justification pour empiler les modèles entraînés pour reproduire leur entrée et donne de meilleurs résultats que l’approche variationnelle. En outre, nous donnons une approximation calculable de la BLM upper bound et montrons qu’elle peut être utilisée pour estimer avec précision la log-vraisemblance finale des modèles. Nous proposons une nouvelle méthode pour la sélection de modèles couche par couche pour les modèles profonds, et un nouveau critère pour déterminer si l’ajout de couches est justifié. Quant à la difficulté d’entraîner chaque couche, nous étudions aussi l’impact des métriques et de la paramétrisation sur la procédure de descente de gradient couramment utilisée pour la maximisation de la vraisemblance. Nous montrons que la descente de gradient est implicitement liée à la métrique de l’espace sous-jacent et que la métrique Euclidienne peut souvent être un choix inadapté car elle introduit une dépendance sur la paramétrisation et peut entraîner une violation de la symétrie. Pour pallier ce problème, nous étudions les avantages du gradient naturel et montrons qu’il peut être utilisé pour restaurer la symétrie, mais avec un coût de calcul élevé. Nous proposons donc qu’une paramétrisation centrée peut rétablir la symétrie avec une très faible surcharge computationnelle. / Since 2006, deep learning algorithms which rely on deep architectures with several layers of increasingly complex representations have been able to outperform state-of-the-art methods in several settings. Deep architectures can be very efficient in terms of the number of parameters required to represent complex operations which makes them very appealing to achieve good generalization with small amounts of data. Although training deep architectures has traditionally been considered a difficult problem, a successful approach has been to employ an unsupervised layer-wise pre-training step to initialize deep supervised models. First, unsupervised learning has many benefits w.r.t. generalization because it only relies on unlabeled data which is easily found. Second, the possibility to learn representations layer by layer instead of all layers at once improves generalization further and reduces computational time. However, deep learning is a very recent approach and still poses a lot of theoretical and practical questions concerning the consistency of layer-wise learning with many layers and difficulties such as evaluating performance, performing model selection and optimizing layers. In this thesis we first discuss the limitations of the current variational justification for layer-wise learning which does not generalize well to many layers. We ask if a layer-wise method can ever be truly consistent, i.e. capable of finding an optimal deep model by training one layer at a time without knowledge of the upper layers. We find that layer-wise learning can in fact be consistent and can lead to optimal deep generative models. To do this, we introduce the Best Latent Marginal (BLM) upper bound, a new criterion which represents the maximum log-likelihood of a deep generative model where the upper layers are unspecified. We prove that maximizing this criterion for each layer leads to an optimal deep architecture, provided the rest of the training goes well. Although this criterion cannot be computed exactly, we show that it can be maximized effectively by auto-encoders when the encoder part of the model is allowed to be as rich as possible. This gives a new justification for stacking models trained to reproduce their input and yields better results than the state-of-the-art variational approach. Additionally, we give a tractable approximation of the BLM upper-bound and show that it can accurately estimate the final log-likelihood of models. Taking advantage of these theoretical advances, we propose a new method for performing layer-wise model selection in deep architectures, and a new criterion to assess whether adding more layers is warranted. As for the difficulty of training layers, we also study the impact of metrics and parametrization on the commonly used gradient descent procedure for log-likelihood maximization. We show that gradient descent is implicitly linked with the metric of the underlying space and that the Euclidean metric may often be an unsuitable choice as it introduces a dependence on parametrization and can lead to a breach of symmetry. To mitigate this problem, we study the benefits of the natural gradient and show that it can restore symmetry, regrettably at a high computational cost. We thus propose that a centered parametrization may alleviate the problem with almost no computational overhead.
23

Modélisation de la structure du silicium amorphe à l’aide d’algorithmes d’apprentissage profond

Comin, Massimiliano 08 1900 (has links)
No description available.
24

Active and deep learning for multimedia / Apprentissage actif et profond pour le multimédia

Budnik, Mateusz 24 February 2017 (has links)
Les thèmes principaux abordés dans cette thèse sont l'utilisation de méthodes d'apprentissage actif et d'apprentissage profond dans le contexte du traitement de documents multimodaux. Les contributions proposées dans cette thèse abordent ces deux thèmes. Un système d'apprentissage actif a été introduit pour permettre une annotation plus efficace des émissions de télévision grâce à la propagation des étiquettes, à l'utilisation de données multimodales et à des stratégies de sélection efficaces. Plusieurs scénarios et expériences ont été envisagés dans le cadre de l'identification des personnes dans les vidéos, en prenant en compte l'utilisation de différentes modalités (telles que les visages, les segments de la parole et le texte superposé) et différentes stratégies de sélection. Le système complet a été validé au cours d'un ``test à blanc'' impliquant des annotateurs humains réels.Une deuxième contribution majeure a été l'étude et l'utilisation de l'apprentissage profond (en particulier les réseaux de neurones convolutifs) pour la recherche d'information dans les vidéos. Une étude exhaustive a été réalisée en utilisant différentes architectures de réseaux neuronaux et différentes techniques d'apprentissage telles que le réglage fin (fine-tuning) ou des classificateurs plus classiques comme les SVMs. Une comparaison a été faite entre les caractéristiques apprises (la sortie des réseaux neuronaux) et les caractéristiques plus classiques (``engineered features''). Malgré la performance inférieure des seconds, une fusion de ces deux types de caractéristiques augmente la performance globale.Enfin, l'utilisation d'un réseau neuronal convolutif pour l'identification des locuteurs à l'aide de spectrogrammes a été explorée. Les résultats ont été comparés à ceux obtenus avec d'autres systèmes d'identification de locuteurs récents. Différentes approches de fusion ont également été testées. L'approche proposée a permis d'obtenir des résultats comparables à ceux certains des autres systèmes testés et a offert une augmentation de la performance lorsqu'elle est fusionnée avec la sortie du meilleur système. / The main topics of this thesis include the use of active learning-based methods and deep learning in the context of retrieval of multimodal documents. The contributions proposed during this thesis address both these topics. An active learning framework was introduced, which allows for a more efficient annotation of broadcast TV videos thanks to the propagation of labels, the use of multimodal data and selection strategies. Several different scenarios and experiments were considered in the context of person identification in videos, including using different modalities (such as faces, speech segments and overlaid text) and different selection strategies. The whole system was additionally validated in a dry run involving real human annotators.A second major contribution was the investigation and use of deep learning (in particular the convolutional neural network) for video retrieval. A comprehensive study was made using different neural network architectures and training techniques such as fine-tuning or using separate classifiers like SVM. A comparison was made between learned features (the output of neural networks) and engineered features. Despite the lower performance of the engineered features, fusion between these two types of features increases overall performance.Finally, the use of convolutional neural network for speaker identification using spectrograms is explored. The results are compared to other state-of-the-art speaker identification systems. Different fusion approaches are also tested. The proposed approach obtains comparable results to some of the other tested approaches and offers an increase in performance when fused with the output of the best system.
25

AI-driven Detection, Characterization and Classification of Chronic Lung Diseases / Outils d’intelligence artificielle pour la détection, la caractérisation et la classification des maladies pulmonaires chronique

Chassagnon, Guillaume 19 November 2019 (has links)
L’évaluation de la gravité et la surveillance des maladies pulmonaires chroniques représentent deux challenges importants pour la prise en charge des patients et l’évaluation des traitements. La surveillance repose principalement sur les données fonctionnelles respiratoires mais l’évaluation morphologique reste un point essentiel pour le diagnostic et l’évaluation de sévérité. Dans la première partie de cette thèse, nous proposons différents modèles pour quantifier la sévérité de pathologies bronchiques chroniques au scanner. Une approche simple par seuillage adaptatif et une méthode plus sophistiquée de radiomique sont évaluées Dans la seconde partie, nous évaluons une méthode d’apprentissage profond pour contourer automatiquement l’atteinte fibrosante de la sclérodermie en scanner. Nous combinons le recalage élastique vers différents atlas morphologiques thoraciques et l’apprentissage profond pour développer un modèle dont les performances sont équivalentes à celles des radiologues. Dans la dernière partie, nous démontrons que l’étude de la déformation pulmonaire en IRM entre inspiration et expiration peut être utilisée pour repérer les régions pulmonaires en transformation fibreuse, moins déformables au cours de la respiration, et qu’en scanner, l’évaluation de la déformation entre des examens successifs de suivi peut diagnostiquer l’aggravation fibreuse chez les patients sclérodermiques. / Disease staging and monitoring of chronic lung diseases are two major challenges for patient care and evaluation of new therapies. Monitoring mainly relies on pulmonary function testing but morphological assessment is a key point for diagnosis and staging In the first part, we propose different models to score bronchial disease severity on computed tomography (CT) scan. A simple thresholding approach using adapted thresholds and a more sophisticated machine learning approach with radiomics are evaluated In the second part, we evaluate deep learning methods to segment lung fibrosis on chest CT scans in patients with systemic sclerosis. We combine elastic registration to atlases of different thoracic morphology and deep learning to produce a model performing as well as radiologists In the last part of the thesis, we demonstrate that lung deformation assessment between inspiratory and expiratory magnetic resonance images can be used to depict fibrotic lung areas, which show less deformation during respiration and that CT assessment of lung deformation on serial CT scans can be used to diagnose lung fibrosis worsening
26

Approches d'apprentissage pour la classification à large échelle d'images de télédétection / Learning approaches for large-scale remote sensing image classification

Maggiori, Emmanuel 22 June 2017 (has links)
L’analyse des images satellite et aériennes figure parmi les sujets fondamentaux du domaine de la télédétection. Ces dernières années, les avancées technologiques ont permis d’augmenter la disponibilité à large échelle des images, en comprenant parfois de larges étendues de terre à haute résolution spatiale. En plus des questions évidentes de complexité calculatoire qui en surgissent, un de plus importants défis est l’énorme variabilité des objets dans les différentes régions de la terre. Pour aborder cela, il est nécessaire de concevoir des méthodes de classification qui dépassent l’analyse du spectre individuel de chaque pixel, en introduisant de l’information contextuelle de haut niveau. Dans cette thèse, nous proposons d’abord une méthode pour la classification avec des contraintes de forme, basée sur l’optimisation d’une structure de subdivision hiérarchique des images. Nous explorons ensuite l’utilisation des réseaux de neurones convolutionnels (CNN), qui nous permettent d’apprendre des descripteurs hiérarchiques profonds. Nous étudions les CNN depuis de nombreux points de vue, ce qui nous permettra de les adapter à notre objectif. Parmi les sujets abordés, nous proposons différentes solutions pour générer des cartes de classification à haute résolution et nous étudions aussi la récolte des données d’entrainement. Nous avons également créé une base de données d’images aériennes sur des zones variées, pour évaluer la capacité de généralisation des CNN. Finalement, nous proposons une méthode pour polygonaliser les cartes de classification issues des réseaux de neurones, afin de pouvoir les intégrer dans des systèmes d’information géographique. Au long de la thèse, nous conduisons des expériences sur des images hyperspectrales, satellites et aériennes, toujours avec l’intention de proposer des méthodes applicables, généralisables et qui passent à l’échelle. / The analysis of airborne and satellite images is one of the core subjects in remote sensing. In recent years, technological developments have facilitated the availability of large-scale sources of data, which cover significant extents of the earth’s surface, often at impressive spatial resolutions. In addition to the evident computational complexity issues that arise, one of the current challenges is to handle the variability in the appearance of the objects across different geographic regions. For this, it is necessary to design classification methods that go beyond the analysis of individual pixel spectra, introducing higher-level contextual information in the process. In this thesis, we first propose a method to perform classification with shape priors, based on the optimization of a hierarchical subdivision data structure. We then delve into the use of the increasingly popular convolutional neural networks (CNNs) to learn deep hierarchical contextual features. We investigate CNNs from multiple angles, in order to address the different points required to adapt them to our problem. Among other subjects, we propose different solutions to output high-resolution classification maps and we study the acquisition of training data. We also created a dataset of aerial images over dissimilar locations, and assess the generalization capabilities of CNNs. Finally, we propose a technique to polygonize the output classification maps, so as to integrate them into operational geographic information systems, thus completing the typical processing pipeline observed in a wide number of applications. Throughout this thesis, we experiment on hyperspectral, atellite and aerial images, with scalability, generalization and applicability goals in mind.
27

Apprentissage de représentations et robotique développementale : quelques apports de l'apprentissage profond pour la robotique autonome / Representation learning and developmental robotics : on the use of deep learning for autonomous robots

Droniou, Alain 09 March 2015 (has links)
Afin de pouvoir évoluer de manière autonome et sûre dans leur environnement, les robots doivent être capables d'en construire un modèle fiable et pertinent. Pour des tâches variées dans des environnements complexes, il est difficile de prévoir de manière exhaustive les capacités nécessaires au robot. Il est alors intéressant de doter les robots de mécanismes d'apprentissage leur donnant la possibilité de construire eux-mêmes des représentations adaptées à leur environnement. Se posent alors deux questions : quelle doit être la nature des représentations utilisées et par quels mécanismes peuvent-elles être apprises ? Nous proposons pour cela l'utilisation de l'hypothèse des sous-variétés afin de développer des architectures permettant de faire émerger une représentation symbolique de flux sensorimoteurs bruts. Nous montrons que le paradigme de l'apprentissage profond fournit des mécanismes appropriés à l'apprentissage autonome de telles représentations. Nous démontrons que l'exploitation de la nature multimodale des flux sensorimoteurs permet d'en obtenir une représentation symbolique pertinente. Dans un second temps, nous étudions le problème de l'évolution temporelle des stimuli. Nous discutons les défauts de la plupart des approches aujourd'hui utilisées et nous esquissons une approche à partir de laquelle nous approfondissons deux sous-problèmes. Dans une troisième partie, nous proposons des pistes de recherche pour permettre le passage des expériences de laboratoire à des environnements naturels. Nous explorons plus particulièrement la problématique de la curiosité artificielle dans des réseaux de neurones non supervisés. / This thesis studies the use of deep neural networks to learn high level representations from raw inputs on robots, based on the "manifold hypothesis".
28

Apprentissage de nouvelles représentations pour la sémantisation de nuages de points 3D / Learning new representations for 3D point cloud semantic segmentation

Thomas, Hugues 19 November 2019 (has links)
Aujourd’hui, de nouvelles technologies permettent l’acquisition de scènes 3D volumineuses et précises sous la forme de nuages de points. Les nouvelles applications ouvertes par ces technologies, comme les véhicules autonomes ou la maintenance d'infrastructure, reposent sur un traitement efficace des nuages de points à grande échelle. Les méthodes d'apprentissage profond par convolution ne peuvent pas être utilisées directement avec des nuages de points. Dans le cas des images, les filtres convolutifs ont permis l’apprentissage de nouvelles représentations, jusqu’alors construites « à la main » dans les méthodes de vision par ordinateur plus anciennes. En suivant le même raisonnement, nous présentons dans cette thèse une étude des représentations construites « à la main » utilisées pour le traitement des nuages de points. Nous proposons ainsi plusieurs contributions, qui serviront de base à la conception d’une nouvelle représentation convolutive pour le traitement des nuages de points. Parmi elles, une nouvelle définition de voisinages sphériques multi-échelles, une comparaison avec les k plus proches voisins multi-échelles, une nouvelle stratégie d'apprentissage actif, la segmentation sémantique des nuages de points à grande échelle, et une étude de l'influence de la densité dans les représentations multi-échelles. En se basant sur ces contributions, nous introduisons la « Kernel Point Convolution » (KPConv), qui utilise des voisinages sphériques et un noyau défini par des points. Ces points jouent le même rôle que les pixels du noyau des convolutions en image. Nos réseaux convolutionnels surpassent les approches de segmentation sémantique de l’état de l’art dans presque toutes les situations. En plus de ces résultats probants, nous avons conçu KPConv avec une grande flexibilité et une version déformable. Pour conclure notre réflexion, nous proposons plusieurs éclairages sur les représentations que notre méthode est capable d'apprendre. / In the recent years, new technologies have allowed the acquisition of large and precise 3D scenes as point clouds. They have opened up new applications like self-driving vehicles or infrastructure monitoring that rely on efficient large scale point cloud processing. Convolutional deep learning methods cannot be directly used with point clouds. In the case of images, convolutional filters brought the ability to learn new representations, which were previously hand-crafted in older computer vision methods. Following the same line of thought, we present in this thesis a study of hand-crafted representations previously used for point cloud processing. We propose several contributions, to serve as basis for the design of a new convolutional representation for point cloud processing. They include a new definition of multiscale radius neighborhood, a comparison with multiscale k-nearest neighbors, a new active learning strategy, the semantic segmentation of large scale point clouds, and a study of the influence of density in multiscale representations. Following these contributions, we introduce the Kernel Point Convolution (KPConv), which uses radius neighborhoods and a set of kernel points to play the role of the kernel pixels in image convolution. Our convolutional networks outperform state-of-the-art semantic segmentation approaches in almost any situation. In addition to these strong results, we designed KPConv with a great flexibility and a deformable version. To conclude our argumentation, we propose several insights on the representations that our method is able to learn.
29

Multi-scale computational rhythm analysis : a framework for sections, downbeats, beats, and microtiming / Analyse numérique multi-échelle du rythme musical : un cadre unifié pour les sections, premiers temps, temps et microtiming

Fuentes, Magdalena 12 November 2019 (has links)
La modélisation computationnelle du rythme a pour objet l'extraction et le traitement d’informations rythmiques à partir d’un signal audio de musique. Cela s'avère être une tâche extrêmement complexe car, pour traiter un enregistrement audio réel, il faut pouvoir gérer sa complexité acoustique et sémantique à plusieurs niveaux de représentation. Les méthodes d’analyse rythmique existantes se concentrent généralement sur l'un de ces aspects à la fois et n’exploitent pas la richesse de la structure musicale, ce qui compromet la cohérence musicale des estimations automatiques. Dans ce travail, nous proposons de nouvelles approches tirant parti des informations multi-échelles pour l'analyse automatique du rythme. Nos modèles prennent en compte des interdépendances intrinsèques aux signaux audio de musique, en permettant ainsi l’interaction entre différentes échelles de temps et en assurant la cohérence musicale entre elles. En particulier, nous effectuons une analyse systématique des systèmes de l’état de l’art pour la détection des premiers temps, ce qui nous conduit à nous tourner vers des architectures convolutionnelles et récurrentes qui exploitent la modélisation acoustique à court et long terme; nous introduisons un modèle de champ aléatoire conditionnel à saut de chaîne pour la détection des premiers temps. Ce système est conçu pour tirer parti des informations de structure musicale (c'est-à-dire des répétitions de sections musicales) dans un cadre unifié. Nous proposons également un modèle linguistique pour la détection conjointe des temps et du micro-timing dans la musique afro-latino-américaine. Nos méthodes sont systématiquement évaluées sur diverses bases de données, allant de la musique occidentale à des genres plus spécifiques culturellement, et comparés à des systèmes de l’état de l’art, ainsi qu’à des variantes plus simples. Les résultats globaux montrent que nos modèles d’estimation des premiers temps sont aussi performants que ceux de l’état de l'art, tout en étant plus cohérents sur le plan musical. De plus, notre modèle d’estimation conjointe des temps et du microtiming représente une avancée vers des systèmes plus interprétables. Les méthodes présentées ici offrent des alternatives nouvelles et plus holistiques pour l'analyse numérique du rythme, ouvrant des perspectives vers une analyse automatique plus complète de la musique. / Computational rhythm analysis deals with extracting and processing meaningful rhythmical information from musical audio. It proves to be a highly complex task, since dealing with real audio recordings requires the ability to handle its acoustic and semantic complexity at multiple levels of representation. Existing methods for rhythmic analysis typically focus on one of those levels, failing to exploit music’s rich structure and compromising the musical consistency of automatic estimations. In this work, we propose novel approaches for leveraging multi-scale information for computational rhythm analysis. Our models account for interrelated dependencies that musical audio naturally conveys, allowing the interplay between different time scales and accounting for music coherence across them. In particular, we conduct a systematic analysis of downbeat tracking systems, leading to convolutional-recurrent architectures that exploit short and long term acoustic modeling; we introduce a skip-chain conditional random field model for downbeat tracking designed to take advantage of music structure information (i.e. music sections repetitions) in a unified framework; and we propose a language model for joint tracking of beats and micro-timing in Afro-Latin American music. Our methods are systematically evaluated on a diverse group of datasets, ranging from Western music to more culturally specific genres, and compared to state-of-the-art systems and simpler variations. The overall results show that our models for downbeat tracking perform on par with the state of the art, while being more musically consistent. Moreover, our model for the joint estimation of beats and microtiming takes further steps towards more interpretable systems. The methods presented here offer novel and more holistic alternatives for computational rhythm analysis, towards a more comprehensive automatic analysis of music.
30

Apprentissage de graphes structuré et parcimonieux dans des données de haute dimension avec applications à l’imagerie cérébrale / Structured Sparse Learning on Graphs in High-Dimensional Data with Applications to NeuroImaging

Belilovsky, Eugene 02 March 2018 (has links)
Cette thèse présente de nouvelles méthodes d’apprentissage structuré et parcimonieux sur les graphes, ce qui permet de résoudre une large variété de problèmes d’imagerie cérébrale, ainsi que d’autres problèmes en haute dimension avec peu d’échantillon. La première partie de cette thèse propose des relaxation convexe de pénalité discrète et combinatoriale impliquant de la parcimonie et bounded total variation d’un graphe, ainsi que la bounded `2. Ceux-ci sont dévelopé dansle but d’apprendre un modèle linéaire interprétable et on démontre son efficacacité sur des données d’imageries cérébrales ainsi que sur les problèmes de reconstructions parcimonieux.Les sections successives de cette thèse traite de la découverte de structure sur des modèles graphiques “undirected” construit à partir de peu de données. En particulier, on se concentre sur des hypothèses de parcimonie et autres hypothèses de structures dans les modèles graphiques gaussiens. Deux contributions s’en dégagent. On construit une approche pour identifier les différentes entre des modèles graphiques gaussiens (GGMs) qui partagent la même structure sous-jacente. On dérive la distribution de différences de paramètres sous une pénalité jointe quand la différence des paramètres est parcimonieuse. On montre ensuite comment cette approche peut être utilisée pour obtenir des intervalles de confiances sur les différences prises par le GGM sur les arêtes. De là, on introduit un nouvel algorithme d’apprentissage lié au problème de découverte de structure sur les modèles graphiques non dirigées des échantillons observés. On démontre que les réseaux de neurones peuvent être utilisés pour apprendre des estimateurs efficacaces de ce problèmes. On montre empiriquement que ces méthodes sont une alternatives flexible et performantes par rapport aux techniques existantes. / This dissertation presents novel structured sparse learning methods on graphs that address commonly found problems in the analysis of neuroimaging data as well as other high dimensional data with few samples. The first part of the thesis proposes convex relaxations of discrete and combinatorial penalties involving sparsity and bounded total variation on a graph as well as bounded `2 norm. These are developed with the aim of learning an interpretable predictive linear model and we demonstrate their effectiveness on neuroimaging data as well as a sparse image recovery problem.The subsequent parts of the thesis considers structure discovery of undirected graphical models from few observational data. In particular we focus on invoking sparsity and other structured assumptions in Gaussian Graphical Models (GGMs). To this end we make two contributions. We show an approach to identify differences in Gaussian Graphical Models (GGMs) known to have similar structure. We derive the distribution of parameter differences under a joint penalty when parameters are known to be sparse in the difference. We then show how this approach can be used to obtain confidence intervals on edge differences in GGMs. We then introduce a novel learning based approach to the problem structure discovery of undirected graphical models from observational data. We demonstrate how neural networks can be used to learn effective estimators for this problem. This is empirically shown to be flexible and efficient alternatives to existing techniques.

Page generated in 0.1212 seconds