• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The bump at the end of the bridge: an investigation

Seo, Jeong Bok 17 February 2005 (has links)
A number of recently constructed bridge approach slabs using an articulation at mid span and the wide flange terminal anchorage system have experienced settlement at their expansion joints. This problem is more commonly referred to as the bump at the end of the bridge. This study investigated reasons for the bumps and recommended ways to improve the current situation. To find out possible causes of the bridge approach slab problem, literature review, questionnaire survey, and a visual inspection for 18 Houston sites were conducted. Based on the results, two bridge sites in Houston, Texas, were selected for detailed investigation. An extensive series of laboratory and field tests were performed at each site. The main causes of bump at two study sites were compression of embankment soil and natural soil, and poor compaction of embankment soil. The finite-element computer program ABAQUS was used to evaluate behavior of the current approach slab design and of a possibly more effective design. The results show that the transition zone is about 12 m with 80 percent of the maximum settlement
2

The bump at the end of the bridge: an investigation

Seo, Jeong Bok 17 February 2005 (has links)
A number of recently constructed bridge approach slabs using an articulation at mid span and the wide flange terminal anchorage system have experienced settlement at their expansion joints. This problem is more commonly referred to as the bump at the end of the bridge. This study investigated reasons for the bumps and recommended ways to improve the current situation. To find out possible causes of the bridge approach slab problem, literature review, questionnaire survey, and a visual inspection for 18 Houston sites were conducted. Based on the results, two bridge sites in Houston, Texas, were selected for detailed investigation. An extensive series of laboratory and field tests were performed at each site. The main causes of bump at two study sites were compression of embankment soil and natural soil, and poor compaction of embankment soil. The finite-element computer program ABAQUS was used to evaluate behavior of the current approach slab design and of a possibly more effective design. The results show that the transition zone is about 12 m with 80 percent of the maximum settlement
3

Reducing Bumps at Pavement-Bridge Interface

Shukla, Amar 26 July 2011 (has links)
No description available.
4

BRIDGE END SETTLEMENT EVALUATION AND PREDICTION

Zhang, Jiwen 01 January 2016 (has links)
A bridge approach is usually built to provide a smooth and safe transition for vehicles from the roadway pavement to the bridge structure. However, differential settlement between the roadway pavement resting on embankment fill and the bridge abutment built on more rigid foundation often creates a bump in the roadway. Previous work examined this issue at a microscopic level and presented new methods for eliminating or minimizing the effects at specific locations. This research studies the problem at a macroscopic level by determining methods to predict settlement severity to assist designers in developing remediation plans during project development to minimize the lifecycle costs of bridge bump repairs. The study is based on historic data from a wide range of Kentucky roads and bridges relating to bridge approach inspection and maintenance history. A macro method considering a combination of maintenance times, maintenance measures, and observed settlement was used to classify the differential settlement scale as minimal, moderate, and severe, corresponding to the approach performance status good, fair, and poor. A series of project characteristics influencing differential settlement were identified and used as parameters to develop a model to accurately predict settlement severity during preliminary design. Eighty-seven bridges with different settlement severities were collected as the first sample by conducting a survey of local bridge engineers in 12 transportation districts. Sample two was created by randomly selecting 600 bridges in the inspection history of bridges in Kentucky. Ordinal and/or multinomial logistic regression analyses were implemented to identify the relationships between the levels of differential settlement and the input variables. Two predictive models were developed. Prediction of bridge approach settlement can play an important role in selecting proper design, construction, and maintenance techniques and measures. The users can select one or two models to predict the approach settlement level for a new bridge or an existing bridge with different purposes. The significance of this study lies in its identification of parameters that had the most influence on the settlement severity at bridge ends, and how those parameters interacted in developing of a prediction model. The important parameters include geographic regions, approach age, average daily traffic (ADT), the use of approach slabs, and the foundation soil depth. The regression results indicate that the use of approach slabs can improve the performance of approaches on mitigating the problem caused by differential settlement. In addition, current practices regarding differential settlement prediction and mitigation were summarized by surveying the bridge engineers in 5 transportation districts.

Page generated in 0.1649 seconds