• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1132
  • 350
  • 166
  • 134
  • 61
  • 45
  • 32
  • 18
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 13
  • Tagged with
  • 2302
  • 421
  • 287
  • 284
  • 229
  • 212
  • 210
  • 207
  • 158
  • 158
  • 151
  • 150
  • 149
  • 148
  • 134
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

On constrained Markov-Nikolskii and Bernstein type inequalities

Klurman, Oleksiy 01 September 2011 (has links)
This thesis is devoted to polynomial inequalities with constraints. We present a history of the development of this subject together with recent progress. In the first part, we solve an analog of classical Markov's problem for monotone polynomials. More precisely, if ∆n denotes the set of all monotone polynomials on [-1,1] of degree n, then for Pn ϵ ∆n and x ϵ [-1,1] the following sharp inequalities hold: │P’n(x)│≤ 2 max(Sk(-x),Sk(-x))║Pn║, for n = 2k + 2, k ≥ 0, and │P'n(x)│ ≤ 2 max (Fk(x), Hk(x))║Pn║, for n = 2k + 1, k ≥ 0, where Sk(x) := (1+x)∑_(l=0 )^k▒(J_l (0,1)(x^2)) ; S_k (x) &:=(1+x)\sum\limits_{l=0}^{k} (J^{(0,1)}_l (x))^2;\\ H_k (x) &:=(1-x^2)\sum\limits_{l=0}^{k-1} (J_l ^{(1,1)} (x))^2;\\ F_k(x) &:=\sum\limits_{l=0}^{k} (J_l ^{(0,0)} (x))^2, \end{align*} and $J_l^{(\alpha,\beta)}(x),$ $l\ge 1$ are the Jacobi polynomials. Let ∆n(1) be the set of all monotone nonnegative polynomials on $[-1,1]$ of degree $n.$ In the second part, we investigate the asymptotic behavior of the constants $$M_{q,p}^{(1)}(n,1):=\sup_{P_n\in\triangle^{(1)}_n}\frac{\|P'_n\|_{L_q [-1,1]}}{\|P_n\|_{L_p [-1,1]}},$$ in constrained Markov-Nikolskii type inequalities. Our conjecture is that \[M^{(1)}_{q,p} (n,1)\asymp \left\{ \begin{array}{ll} n^{2+2/p-2/q} , & \mbox{\rm if } 1>1/q-1/p ,\\ \log{n} , & \mbox{\rm if } 1=1/q-1/p, \\ 1 , & \mbox{\rm if } 1< 1/q - 1/p . \end{array} \right. \] We prove this conjecture for all values of p,q > 0, except for the case 0 < q < 1, 1/2 ≤ 1/q- 1/p ≤ 1, p ≠ 1
12

Approximation to summable functions

Howlett, Philip George January 1970 (has links)
vi, 150 leaves / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Mathematics, 1971
13

Optimal approximations of functions one sided approximation and extrema preserving approximations /

Kammerer, W. J. January 1959 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1959. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 62-68).
14

Das Näherungsverfahren Xn̳=[phi](Xn̳-̳1̳) und seine Anwendung auf Theorie und Praxis algebraischer und transzendenter Gleichungen

Vermeil, Hermann, January 1914 (has links)
Thesis (doctoral)--Universität Leipzig, 1914. / On t.p. "n̳" and "n̳-̳1̳" are subscript. Vita. Includes bibliographical references.
15

Beste einseitige L-Approximation mit Quasi-Blending-Funktionen

Klinkhammer, John. January 2002 (has links) (PDF)
Duisburg, Univ., Diss., 2001.
16

Approximate computation

Bakst, Aaron, January 1937 (has links)
Thesis (Ph. D.)--Columbia University, 1937. / Vita. Bibliography: p. 284-287.
17

An investigation of Huynh's normal approximation procedure for estimating criterion-referenced reliability

Peng, J. Chao-ying. January 1900 (has links)
Thesis--University of Wisconsin--Madison. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 84-88).
18

Ein Triangulierungsverfahren zur Approximation mit Dahmen-Micchelli-Seidel-Splines

Hussmann, Markus. January 1999 (has links)
Duisburg, Universiẗat, Diss., 1999. / Dateiformat: zip, Dateien in unterschiedlichen Formaten.
19

Vertical and Orthogonal L1 Linear Approximation: Analysis and Algorithms

Yamamoto, Peter J. January 1988 (has links)
Note:
20

Kantorovich's general theory of approximation methods

Wolkowicz, Henry. January 1975 (has links)
No description available.

Page generated in 0.1126 seconds