• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Swapping Edges of Arbitrary Triangulations to Achieve the Optimal Order of Approximation

Chui, Charles K., Hong, Dong 01 January 1997 (has links)
In the representation of scattered data by smooth pp (:= piecewise polynomial) functions, perhaps the most important problem is to find an optimal triangulation of the given sample sites (called vertices). Of course, the notion of optimality depends on the desirable properties in the approximation or modeling problems. In this paper, we are concerned with optimal approximation order with respect to the given order r of smoothness and degree k of the polynomial pieces of the smooth pp functions. We will only consider C1 pp approximation with r = 1 and k = 4. The main result in this paper is an efficient method for triangulating any finitely many arbitrarily scattered sample sites, such that these sample sites are the only vertices of the triangulation, and that for any discrete data given at these sample sites, there is a C1 piecewise quartic polynomial on this triangulation that interpolates the given data with the fifth order of approximation.

Page generated in 0.0115 seconds