• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • Tagged with
  • 19
  • 19
  • 18
  • 18
  • 9
  • 9
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seleção e controle do viés de aprendizado ativo / Selection and control of the active learning bias

Santos, Davi Pereira dos 22 February 2016 (has links)
A área de aprendizado de máquina passa por uma grande expansão em seu universo de aplicações. Algoritmos de indução de modelos preditivos têm sido responsáveis pela realização de tarefas que eram inviáveis ou consideradas exclusividade do campo de ação humano até recentemente. Contudo, ainda é necessária a supervisão humana durante a construção de conjuntos de treinamento, como é o caso da tarefa de classificação. Tal construção se dá por meio da rotulação manual de cada exemplo, atribuindo a ele pelo menos uma classe. Esse processo, por ser manual, pode ter um custo elevado se for necessário muitas vezes. Uma técnica sob investigação corrente, capaz de mitigar custos de rotulação, é o aprendizado ativo. Dado um orçamento limitado, o objetivo de uma estratégia de amostragem ativa é direcionar o esforço de treinamento para os exemplos essenciais. Existem diversas abordagens efetivas de selecionar ativamente os exemplos mais importantes para consulta ao supervisor. Entretanto, não é possível, sem incorrer em custos adicionais, testá-las de antemão quanto à sua efetividade numa dada aplicação. Ainda mais crítica é a necessidade de que seja escolhido um algoritmo de aprendizado para integrar a estratégia de aprendizado ativo antes que se disponha de um conjunto de treinamento completo. Para lidar com esses desafios, esta tese apresenta como principais contribuições: uma estratégia baseada na inibição do algoritmo de aprendizado nos momentos menos propícios ao seu funcionamento; e, a experimentação da seleção de algoritmos de aprendizado, estratégias ativas de consulta ou pares estratégia-algoritmo baseada em meta-aprendizado, visando a experimentação de formas de escolha antes e durante o processo de rotulação. A estratégia de amostragem proposta é demonstrada competitiva empiricamente. Adicionalmente, experimentos iniciais com meta-aprendizado indicam a possibilidade de sua aplicação em aprendizado ativo, embora tenha sido identificado que investigações mais extensivas e aprofundadas sejam necessárias para apurar sua real efetividade prática. Importantes contribuições metodológicas são descritas neste documento, incluindo uma análise frequentemente negligenciada pela literatura da área: o risco devido à variabilidade dos algoritmos. Por fim, são propostas as curvas e faixas de ranqueamento, capazes de sumarizar, num único gráfico, experimentos de uma grande coleção de conjuntos de dados. / The machine learning area undergoes a major expansion in its universe of applications. Algorithms for the induction of predictive models have made it possible to carry out tasks that were once considered unfeasible or restricted to be solved by humans. However, human supervision is still needed to build training sets, for instance, in the classification task. Such building is usually performed by manual labeling of each instance, providing it, at least, one class. This process has a high cost due to its manual nature. A current technique under research, able to mitigate labeling costs, is called active learning. The goal of an active learning strategy is to manage the training effort to focus on the most relevant instances, within a budget. Several effective sampling approaches having been proposed. However, when one needs to choose the proper strategy for a given problem, they are impossible to test beforehand without incurring into additional costs. Even more critical is the need to choose a learning algorithm to integrate the active learning strategy before the existence of a complete training set. This thesis presents two major contributions to cope with such challenges: a strategy based on the learning algorithm inhibition when it is prone to inaccurate predictions; and, an attempt to automatically select the learning algorithms, active querying strategies or pairs strategy-algorithm, based on meta-learning. This attempt tries to verify the feasibility of such kind of decision making before and during the learning process. The proposed sampling approach is empirically shown to be competitive. Additionally, meta-learning experiments show that it can be applied to active learning, although more a extensive investigation is still needed to assess its real practical effectivity. Important methodological contributions are made in this document, including an often neglected analysis in the literature of active learning: the risk due to the algorithms variability. A major methodological contribution, called ranking curves, is presented.
2

Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections / Agrupamento hierárquico semissupervisionado ativo baseado em confiança e sua aplicação para extração de hierarquias de tópicos a partir de coleções de documentos

Nogueira, Bruno Magalhães 16 December 2013 (has links)
Topic hierarchies are efficient ways of organizing document collections. These structures help users to manage the knowledge contained in textual data. These hierarchies are usually obtained through unsupervised hierarchical clustering algorithms. By not considering the context of the user in the formation of the hierarchical groups, unsupervised topic hierarchies may not attend the user\'s expectations in some cases. One possible solution for this problem is to employ semi-supervised clustering algorithms. These algorithms incorporate the user\'s knowledge through the usage of constraints to the clustering process. However, in the context of semi-supervised hierarchical clustering, the works in the literature do not efficient explore the selection of cases (instances or cluster) to add constraints, neither the interaction of the user with the clustering process. In this sense, in this work we introduce two semi-supervised hierarchical clustering algorithms: HCAC (Hierarchical Confidence-based Active Clustering) and HCAC-LC (Hierarchical Confidence-based Active Clustering with Limited Constraints). These algorithms employ an active learning approach based in the confidence of cluster merges. When a low confidence merge is detected, the user is invited to decide, from a pool of candidate pairs of clusters, the best cluster merge in that point. In this work, we employ HCAC and HCAC-LC in the extraction of topic hierarchies through the SMITH framework, which is also proposed in this thesis. This framework provides a series of well defined activities that allow the user\'s interaction in the generation of topic hierarchies. The active learning approach used in the HCAC-based algorithms, the kind of queries employed in these algorithms, as well as the SMITH framework for the generation of semi-supervised topic hierarchies are innovations to the state of the art proposed in this thesis. Our experimental results indicate that HCAC and HCAC-LC outperform other semi-supervised hierarchical clustering algorithms in diverse scenarios. The results also indicate that semi-supervised topic hierarchies obtained through the SMITH framework are more intuitive and easier to navigate than unsupervised topic hierarchies / Hierarquias de tópicos são formas eficientes de organização de coleções de documentos, auxiliando usuários a gerir o conhecimento materializado nessas publicações textuais. Tais hierarquias são usualmente construídas por meio de algoritmos de agrupamento hierárquico não supervisionado. Entretanto, por não considerarem o contexto do usuário na formação dos grupos, hierarquias de tópicos não supervisionadas nem sempre conseguem atender as suas expectativas. Uma solução para este problema e o emprego de algoritmos de agrupamento semissupervisionado, os quais incorporam o conhecimento de domínio do usuário por meio de restrições. Entretanto, para o contexto de agrupamento hierárquico semissupervisionado, não são eficientemente explorados na literatura métodos de seleção de casos (instâncias ou grupos) para receber restrições, bem como não há formas eficientes de interação do usuário com o processo de agrupamento hierárquico. Dessa maneira, neste trabalho, dois algoritmos de agrupamento hierárquico semissupervisionado são propostos: HCAC (Hierarchical Confidence-based Active Clustering) e HCAC-LC (Hierarchical Confidence-based Active Clustering with Limited Constraints). Estes algoritmos empregam uma abordagem de aprendizado ativo baseado na confiança de uma junção de clusters. Quando uma junção de baixa confiança e detectada, o usuário e convidado a decidir, em um conjunto de pares de grupos candidatos, a melhor junção naquele ponto. Estes algoritmos são aqui utilizados na extração de hierarquias de tópicos por meio do framework SMITH, também proposto nesse trabalho. Este framework fornece uma série de atividades bem definidas que possibilitam a interação do usuário para a obtenção de hierarquias de tópicos. A abordagem de aprendizado ativo utilizado nos algoritmos HCAC e HCAC-LC, o tipo de restrição utilizada nestes algoritmos, bem como o framework SMITH para obtenção de hierarquias de tópicos semissupervisionadas são inovações ao estado da arte propostos neste trabalho. Os resultados obtidos indicam que os algoritmos HCAC e HCAC-LC superam o desempenho de outros algoritmos hierárquicos semissupervisionados em diversos cenários. Os resultados também indicam que hierarquias de tópico semissupervisionadas obtidas por meio do framework SMITH são mais intuitivas e fáceis de navegar do que aquelas não supervisionadas
3

Seleção e controle do viés de aprendizado ativo / Selection and control of the active learning bias

Davi Pereira dos Santos 22 February 2016 (has links)
A área de aprendizado de máquina passa por uma grande expansão em seu universo de aplicações. Algoritmos de indução de modelos preditivos têm sido responsáveis pela realização de tarefas que eram inviáveis ou consideradas exclusividade do campo de ação humano até recentemente. Contudo, ainda é necessária a supervisão humana durante a construção de conjuntos de treinamento, como é o caso da tarefa de classificação. Tal construção se dá por meio da rotulação manual de cada exemplo, atribuindo a ele pelo menos uma classe. Esse processo, por ser manual, pode ter um custo elevado se for necessário muitas vezes. Uma técnica sob investigação corrente, capaz de mitigar custos de rotulação, é o aprendizado ativo. Dado um orçamento limitado, o objetivo de uma estratégia de amostragem ativa é direcionar o esforço de treinamento para os exemplos essenciais. Existem diversas abordagens efetivas de selecionar ativamente os exemplos mais importantes para consulta ao supervisor. Entretanto, não é possível, sem incorrer em custos adicionais, testá-las de antemão quanto à sua efetividade numa dada aplicação. Ainda mais crítica é a necessidade de que seja escolhido um algoritmo de aprendizado para integrar a estratégia de aprendizado ativo antes que se disponha de um conjunto de treinamento completo. Para lidar com esses desafios, esta tese apresenta como principais contribuições: uma estratégia baseada na inibição do algoritmo de aprendizado nos momentos menos propícios ao seu funcionamento; e, a experimentação da seleção de algoritmos de aprendizado, estratégias ativas de consulta ou pares estratégia-algoritmo baseada em meta-aprendizado, visando a experimentação de formas de escolha antes e durante o processo de rotulação. A estratégia de amostragem proposta é demonstrada competitiva empiricamente. Adicionalmente, experimentos iniciais com meta-aprendizado indicam a possibilidade de sua aplicação em aprendizado ativo, embora tenha sido identificado que investigações mais extensivas e aprofundadas sejam necessárias para apurar sua real efetividade prática. Importantes contribuições metodológicas são descritas neste documento, incluindo uma análise frequentemente negligenciada pela literatura da área: o risco devido à variabilidade dos algoritmos. Por fim, são propostas as curvas e faixas de ranqueamento, capazes de sumarizar, num único gráfico, experimentos de uma grande coleção de conjuntos de dados. / The machine learning area undergoes a major expansion in its universe of applications. Algorithms for the induction of predictive models have made it possible to carry out tasks that were once considered unfeasible or restricted to be solved by humans. However, human supervision is still needed to build training sets, for instance, in the classification task. Such building is usually performed by manual labeling of each instance, providing it, at least, one class. This process has a high cost due to its manual nature. A current technique under research, able to mitigate labeling costs, is called active learning. The goal of an active learning strategy is to manage the training effort to focus on the most relevant instances, within a budget. Several effective sampling approaches having been proposed. However, when one needs to choose the proper strategy for a given problem, they are impossible to test beforehand without incurring into additional costs. Even more critical is the need to choose a learning algorithm to integrate the active learning strategy before the existence of a complete training set. This thesis presents two major contributions to cope with such challenges: a strategy based on the learning algorithm inhibition when it is prone to inaccurate predictions; and, an attempt to automatically select the learning algorithms, active querying strategies or pairs strategy-algorithm, based on meta-learning. This attempt tries to verify the feasibility of such kind of decision making before and during the learning process. The proposed sampling approach is empirically shown to be competitive. Additionally, meta-learning experiments show that it can be applied to active learning, although more a extensive investigation is still needed to assess its real practical effectivity. Important methodological contributions are made in this document, including an often neglected analysis in the literature of active learning: the risk due to the algorithms variability. A major methodological contribution, called ranking curves, is presented.
4

Deep active learning using Monte Carlo Dropout / Aprendizado ativo profundo usando Monte Carlo Dropout

Moura, Lucas Albuquerque Medeiros de 14 November 2018 (has links)
Deep Learning models rely on a huge amount of labeled data to be created. However, there are a number of areas where labeling data is a costly process, making Deep Learning approaches unfeasible. One way to handle that situation is by using the Active Learning technique. Initially, it creates a model with the available labeled data. After that, it incrementally chooses new unlabeled data that will potentially increase the model accuracy, if added to the training data. To select which data will be labeled next, this technique requires a measurement of uncertainty from the model prediction, which is usually not computed for Deep Learning methods. A new approach has been proposed to measure uncertainty in those models, called Monte Carlo Dropout . This technique allowed Active Learning to be used together with Deep Learning for image classification. This research will evaluate if modeling uncertainty on Deep Learning models with Monte Carlo Dropout will make the use of Active Learning feasible for the task of sentiment analysis, an area with huge amount of data, but few of them labeled. / Modelos de Aprendizado Profundo necessitam de uma vasta quantidade de dados anotados para serem criados. Entretanto, existem muitas áreas onde obter dados anotados é uma tarefa custosa. Neste cenário, o uso de Aprendizado Profundo se torna bastante difícil. Uma maneira de lidar com essa situação é usando a técnica de Aprendizado Ativo. Inicialmente, essa técnica cria um modelo com os dados anotados disponíveis. Depois disso, ela incrementalmente escolhe dados não anotados que irão, potencialmente, melhorar à acurácia do modelo, se adicionados aos dados de treinamento. Para selecionar quais dados serão anotados, essa técnica necessita de uma medida de incerteza sobre as predições geradas pelo modelo. Entretanto, tal medida não é usualmente realizada em modelos de Aprendizado Profundo. Uma nova técnica foi proposta para lidar com a problemática de medir a incerteza desses modelos, chamada de Monte Carlo Dropout . Essa técnica permitiu o uso de Aprendizado Ativo junto com Aprendizado Profundo para tarefa de classificação de imagens. Essa pesquisa visa averiguar se ao modelarmos a incerteza em modelos de Aprendizado Profundo com a técnica de Monte Carlo Dropout , será possível usar a técnica de Aprendizado Ativo para tarefa de análise de sentimento, uma área com uma vasta quantidade de dados, mas poucos deles anotados.
5

Detecção de mudança de conceito baseada em aprendizado ativo

Costa, Albert França Josuá, 68-99211-7175 11 December 2017 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-03-02T13:31:20Z No. of bitstreams: 2 Dissertação_Albert F. J. Costa.pdf: 4215192 bytes, checksum: 995a811676e714bffa60b5d73a387cfa (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-03-02T13:31:36Z (GMT) No. of bitstreams: 2 Dissertação_Albert F. J. Costa.pdf: 4215192 bytes, checksum: 995a811676e714bffa60b5d73a387cfa (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-03-02T13:31:36Z (GMT). No. of bitstreams: 2 Dissertação_Albert F. J. Costa.pdf: 4215192 bytes, checksum: 995a811676e714bffa60b5d73a387cfa (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-12-11 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / Current machine learning techniques used for prediction tasks rely on the assumption that the environment where data is generated is static and supervised. However, most of the real-world problems present dynamic and semi-supervised environments, which invalidate this assumed assumption. In these environments, it is possible the occurrence of a phenomenon known in the literature as concept drift. The main characteristic of such a phenomenon is that the relationship between instances’ features and their true classes changes over time. The primary effect of the concept drift occurrence is the decrease on classifier performance, which leads the classifier to be obsolete for the task. There are methods in the literature that deal with concept drift implicitly or explicitly. The main drawback to blind (implicit) methods is the cost on retraining the classifier constantly, even with no concept drift occurrence, while the informed (explicit) methods generally work based on classifier performance decrease, or based on assumptions about the samples distribution. In order to try to overcome these drawbacks, in this work we propose to use density variation of the most significant instances as an explicit trigger for concept drift detection. Density variation measurement is based on Active Learning, and is calculated from virtual margins projected onto the input space according to the classifier confidence. Focusing on demonstrating the validity of the proposed method, called Concept Drift Detection Method Based on Active Learning (DMAA), were have carried out experiments divided into two series. In the first series, DMAA was investigated on six databases, which represent four synthetic and two real problems. The obtained results show that the proposed method achieved 95.45% of drift detection rate on synthetic databases, and 16.5% as mean error rate in both synthetic and real databases. In the second series of experiments, DMAA was compared to three baselines, including two supervised drift detectors and one Active Learning-based method. The obtained results show that DMAA reached statistically significant better recognition rates in the majority of databases. Besides, it reduced the amount of labeled instances needed to keep the system updated. / As atuais técnicas de aprendizado de máquina aplicadas na tarefa de predição são baseadas na premissa de que o ambiente em que os dados são gerados apresenta um comportamento estacionário e supervisionado. Porém, os ambientes, na maioria dos problemas do mundo real, são considerados dinâmicos e semi-supervisionados, fatos que invalidam as premissas normalmente utilizadas. Nesses ambientes há a possibilidade da ocorrência do fenômeno conhecido na literatura por mudança de conceito (do inglês concept drift), que caracteriza-se pela alteração na relação entre as características das instâncias e a sua verdadeira classe com a passagem do tempo. Como efeito primário da ocorrência desse fenômeno tem-se a degradação significativa na taxa de desempenho do classificador, tornando-o obsoleto para a tarefa. Encontram-se na literatura métodos que lidam implicitamente ou explicitamente com a mudança de conceito, sendo que os métodos cegos (implícitos) arcam com os custos de retreinar o classificador de forma constante, enquanto que os métodos informados (explícitos) atuam normalmente baseados no monitoramento da degradação do desempenho do classificador, ou na realização de suposições sobre a distribuição das instâncias. Para contornar essas dificuldades, esta dissertação propõe o uso da variação da densidade das instâncias mais significativas, calculada com base em Aprendizado Ativo, como sinalizador explícito da ocorrência de mudança de conceito. A densidade é mensurada a partir do conceito de margens virtuais projetadas no espaço de entrada, sendo que as margens virtuais são obtidas com base na incerteza do classificador. Objetivando-se demonstrar a validade do método proposto, denominado de Método de Detecção de Mudança de Conceito Baseada em Aprendizado Ativo (DMAA), experimentos foram realizados em duas etapas. A primeira consistiu na aplicação do DMAA em seis bases de dados, sendo quatro sintéticas e duas reais. Os resultados obtidos demonstram que o método proposto identificou em média 95,45% das mudanças existentes nas bases sintéticas, e alcançou uma média geral de erro de 16,5%. Na segunda etapa de experimentos, foi feita uma comparação entre o DMAA e três baselines, incluindo dois métodos supervisionados e um método baseado em aprendizado ativo. Os resultados indicam que o DMAA alcançou resultados estatisticamente superiores em mais da metade das bases de dados investigadas, além de reduzir significativamente a quantidade de instâncias rotuladas necessárias para manter o sistema atualizado.
6

Hierarchical semi-supervised confidence-based active clustering and its application to the extraction of topic hierarchies from document collections / Agrupamento hierárquico semissupervisionado ativo baseado em confiança e sua aplicação para extração de hierarquias de tópicos a partir de coleções de documentos

Bruno Magalhães Nogueira 16 December 2013 (has links)
Topic hierarchies are efficient ways of organizing document collections. These structures help users to manage the knowledge contained in textual data. These hierarchies are usually obtained through unsupervised hierarchical clustering algorithms. By not considering the context of the user in the formation of the hierarchical groups, unsupervised topic hierarchies may not attend the user\'s expectations in some cases. One possible solution for this problem is to employ semi-supervised clustering algorithms. These algorithms incorporate the user\'s knowledge through the usage of constraints to the clustering process. However, in the context of semi-supervised hierarchical clustering, the works in the literature do not efficient explore the selection of cases (instances or cluster) to add constraints, neither the interaction of the user with the clustering process. In this sense, in this work we introduce two semi-supervised hierarchical clustering algorithms: HCAC (Hierarchical Confidence-based Active Clustering) and HCAC-LC (Hierarchical Confidence-based Active Clustering with Limited Constraints). These algorithms employ an active learning approach based in the confidence of cluster merges. When a low confidence merge is detected, the user is invited to decide, from a pool of candidate pairs of clusters, the best cluster merge in that point. In this work, we employ HCAC and HCAC-LC in the extraction of topic hierarchies through the SMITH framework, which is also proposed in this thesis. This framework provides a series of well defined activities that allow the user\'s interaction in the generation of topic hierarchies. The active learning approach used in the HCAC-based algorithms, the kind of queries employed in these algorithms, as well as the SMITH framework for the generation of semi-supervised topic hierarchies are innovations to the state of the art proposed in this thesis. Our experimental results indicate that HCAC and HCAC-LC outperform other semi-supervised hierarchical clustering algorithms in diverse scenarios. The results also indicate that semi-supervised topic hierarchies obtained through the SMITH framework are more intuitive and easier to navigate than unsupervised topic hierarchies / Hierarquias de tópicos são formas eficientes de organização de coleções de documentos, auxiliando usuários a gerir o conhecimento materializado nessas publicações textuais. Tais hierarquias são usualmente construídas por meio de algoritmos de agrupamento hierárquico não supervisionado. Entretanto, por não considerarem o contexto do usuário na formação dos grupos, hierarquias de tópicos não supervisionadas nem sempre conseguem atender as suas expectativas. Uma solução para este problema e o emprego de algoritmos de agrupamento semissupervisionado, os quais incorporam o conhecimento de domínio do usuário por meio de restrições. Entretanto, para o contexto de agrupamento hierárquico semissupervisionado, não são eficientemente explorados na literatura métodos de seleção de casos (instâncias ou grupos) para receber restrições, bem como não há formas eficientes de interação do usuário com o processo de agrupamento hierárquico. Dessa maneira, neste trabalho, dois algoritmos de agrupamento hierárquico semissupervisionado são propostos: HCAC (Hierarchical Confidence-based Active Clustering) e HCAC-LC (Hierarchical Confidence-based Active Clustering with Limited Constraints). Estes algoritmos empregam uma abordagem de aprendizado ativo baseado na confiança de uma junção de clusters. Quando uma junção de baixa confiança e detectada, o usuário e convidado a decidir, em um conjunto de pares de grupos candidatos, a melhor junção naquele ponto. Estes algoritmos são aqui utilizados na extração de hierarquias de tópicos por meio do framework SMITH, também proposto nesse trabalho. Este framework fornece uma série de atividades bem definidas que possibilitam a interação do usuário para a obtenção de hierarquias de tópicos. A abordagem de aprendizado ativo utilizado nos algoritmos HCAC e HCAC-LC, o tipo de restrição utilizada nestes algoritmos, bem como o framework SMITH para obtenção de hierarquias de tópicos semissupervisionadas são inovações ao estado da arte propostos neste trabalho. Os resultados obtidos indicam que os algoritmos HCAC e HCAC-LC superam o desempenho de outros algoritmos hierárquicos semissupervisionados em diversos cenários. Os resultados também indicam que hierarquias de tópico semissupervisionadas obtidas por meio do framework SMITH são mais intuitivas e fáceis de navegar do que aquelas não supervisionadas
7

Abordagens para aprendizado semissupervisionado multirrótulo e hierárquico / Multi-label and hierarchical semi-supervised learning approaches

Metz, Jean 25 October 2011 (has links)
A tarefa de classificação em Aprendizado de Máquina consiste da criação de modelos computacionais capazes de identificar automaticamente a classe de objetos pertencentes a um domínio pré-definido a partir de um conjunto de exemplos cuja classe é conhecida. Existem alguns cenários de classificação nos quais cada objeto pode estar associado não somente a uma classe, mas a várias classes ao mesmo tempo. Adicionalmente, nesses cenários denominados multirrótulo, as classes podem ser organizadas em uma taxonomia que representa as relações de generalização e especialização entre as diferentes classes, definindo uma hierarquia de classes, o que torna a tarefa de classificação ainda mais específica, denominada classificação hierárquica. Os métodos utilizados para a construção desses modelos de classificação são complexos e dependem fortemente da disponibilidade de uma quantidade expressiva de exemplos previamente classificados. Entretanto, para muitas aplicações é difícil encontrar um número significativo desses exemplos. Além disso, com poucos exemplos, os algoritmos de aprendizado supervisionado não são capazes de construir modelos de classificação eficazes. Nesses casos, é possível utilizar métodos de aprendizado semissupervisionado, cujo objetivo é aprender as classes do domínio utilizando poucos exemplos conhecidos conjuntamente com um número considerável de exemplos sem a classe especificada. Neste trabalho são propostos, entre outros, métodos que fazem uso do aprendizado semissupervisionado baseado em desacordo coperspectiva, tanto para a tarefa de classificação multirrótulo plana quanto para a tarefa de classificação hierárquica. São propostos, também, outros métodos que utilizam o aprendizado ativo com intuito de melhorar a performance de algoritmos de classificação semissupervisionada. Além disso, são propostos dois métodos para avaliação de algoritmos multirrótulo e hierárquico, os quais definem estratégias para identificação dos multirrótulos majoritários, que são utilizados para calcular os valores baseline das medidas de avaliação. Foi desenvolvido um framework para realizar a avaliação experimental da classificação hierárquica, no qual foram implementados os métodos propostos e um módulo completo para realizar a avaliação experimental de algoritmos hierárquicos. Os métodos propostos foram avaliados e comparados empiricamente, considerando conjuntos de dados de diversos domínios. A partir da análise dos resultados observa-se que os métodos baseados em desacordo não são eficazes para tarefas de classificação complexas como multirrótulo e hierárquica. Também é observado que o problema central de degradação do modelo dos algoritmos semissupervisionados agrava-se nos casos de classificação multirrótulo e hierárquica, pois, nesses casos, há um incremento nos fatores responsáveis pela degradação nos modelos construídos utilizando aprendizado semissupervisionado baseado em desacordo coperspectiva / In machine learning, the task of classification consists on creating computational models that are able to automatically identify the class of objects belonging to a predefined domain from a set of examples whose class is known a priori. There are some classification scenarios in which each object can be associated to more than one class at the same time. Moreover, in such multilabeled scenarios, classes can be organized in a taxonomy that represents the generalization and specialization relationships among the different classes, which defines a class hierarchy, making the classification task, known as hierarchical classification, even more specific. The methods used to build such classification models are complex and highly dependent on the availability of an expressive quantity of previously classified examples. However, for a large number of applications, it is difficult to find a significant number of such examples. Moreover, when few examples are available, supervised learning algorithms are not able to build efficient classification models. In such situations it is possible to use semi-supervised learning, whose aim is to learn the classes of the domain using a few classified examples in conjunction to a considerable number of examples with no specified class. In this work, we propose methods that use the co-perspective disagreement based learning approach for both, the flat multilabel classification and the hierarchical classification tasks, among others. We also propose other methods that use active learning, aiming at improving the performance of semi-supervised learning algorithms. Additionally, two methods for the evaluation of multilabel and hierarchical learning algorithms are proposed. These methods define strategies for the identification of the majority multilabels, which are used to estimate the baseline evaluation measures. A framework for the experimental evaluation of the hierarchical classification was developed. This framework includes the implementations of the proposed methods as well as a complete module for the experimental evaluation of the hierarchical algorithms. The proposed methods were empirically evaluated considering datasets from various domains. From the analysis of the results, it can be observed that the methods based on co-perspective disagreement are not effective for complex classification tasks, such as the multilabel and hierarchical classification. It can also be observed that the main degradation problem of the models of the semi-supervised algorithms worsens for the multilabel and hierarchical classification due to the fact that, for these cases, there is an increase in the causes of the degradation of the models built using semi-supervised learning based on co-perspective disagreement
8

Classificação semi-supervisionada ativa baseada em múltiplas hierarquias de agrupamento / Active semi-supervised classification based on multiple clustering hierarchies

Batista, Antônio José de Lima 08 August 2016 (has links)
Algoritmos de aprendizado semi-supervisionado ativo podem se configurar como ferramentas úteis em cenários práticos em que os dados são numerosamente obtidos, mas atribuir seus respectivos rótulos de classe se configura como uma tarefa custosa/difícil. A literatura em aprendizado ativo destaca diversos algoritmos, este trabalho partiu do tradicional Hierarchical Sampling estabelecido para operar sobre hierarquias de grupos. As características de tal algoritmo o coloca à frente de outros métodos ativos, entretanto o mesmo ainda apresenta algumas dificuldades. A fim de aprimorá-lo e contornar suas principais dificuldades, incluindo sua sensibilidade na escolha particular de uma hierarquia de grupos como entrada, este trabalho propôs estratégias que possibilitaram melhorar o algoritmo na sua forma original e diante de variantes propostas na literatura. Os experimentos em diferentes bases de dados reais mostraram que o algoritmo proposto neste trabalho é capaz de superar e competir em qualidade dentro do cenário de classificação ativa com outros algoritmos ativos da literatura. / Active semi-supervised learning can play an important role in classification scenarios in which labeled data are laborious and/or expensive to obtain, while unlabeled data are numerous and can be easily acquired. There are many active algorithms in the literature and this work focuses on an active semi-supervised algorithm that can be driven by clustering hierarchy, the well-known Hierarchical Sampling (HS) algorithm. This work takes as a starting point the original Hierarchical Sampling algorithm and perform changes in different aspects of the original algorithm in order to tackle its main drawbacks, including its sensitivity to the choice of a single particular hierarchy. Experimental results over many real datasets show that the proposed algorithm performs superior or competitive when compared to a number of state-of-the-art algorithms for active semi-supervised classification.
9

Casamento de esquemas de banco de dados aplicando aprendizado ativo

Rodrigues, Diego de Azevedo 12 March 2013 (has links)
Submitted by Geyciane Santos (geyciane_thamires@hotmail.com) on 2015-06-18T13:54:27Z No. of bitstreams: 1 Dissertação - Diego de Azevedo Rodrigues.pdf: 8601801 bytes, checksum: 6c2dde718a0b6857ac6e14fd715e240c (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-19T21:02:00Z (GMT) No. of bitstreams: 1 Dissertação - Diego de Azevedo Rodrigues.pdf: 8601801 bytes, checksum: 6c2dde718a0b6857ac6e14fd715e240c (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-19T21:03:00Z (GMT) No. of bitstreams: 1 Dissertação - Diego de Azevedo Rodrigues.pdf: 8601801 bytes, checksum: 6c2dde718a0b6857ac6e14fd715e240c (MD5) / Made available in DSpace on 2015-06-19T21:03:00Z (GMT). No. of bitstreams: 1 Dissertação - Diego de Azevedo Rodrigues.pdf: 8601801 bytes, checksum: 6c2dde718a0b6857ac6e14fd715e240c (MD5) Previous issue date: 2013-03-12 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / Given two database schemas within the same domain, the schema matching problem is the task of finding pairs of schema elements that have the same semantics for that domain. Usually, this task was performed manually by a specialist making it tedious and costly because the specialist should know the schemas and their domain. Currently this process is assisted by semi-automatic schema matching methods. Current, methods use some heuristics to generate matchings and many of them share a common modeling: they build a similarity matrix between the elements from functions called matchers and, based on the matrix values, decide according to a criterion which of the matchings are correct. This thesis presents an active-learning based method that uses the similarity matrix generated by the matchers, a machine learning algorithm and specialist interventions to generate matchings. The presented method di↵ers from others because it has no fixed heuristic and uses the specialist expertise only when necessary. In our experiments, we evaluate the proposed method against a baseline on two datasets: the first one was the same used by the baseline and the second containing schemas of a benchmark for schema integration. We show that baseline achieves good results on its original dataset, but its fixed strategy is not as e↵ective for other schemas. Moreover, the proposed method based on active learning is shown more consistent achieving, on average, F-measure value of 0.64. / Dados dois esquemas de bancos de dados pertencentes ao mesmo domíınio, o problema de Casamento de Esquemas consiste em encontrar pares de elementos desses esquemas que possuam a mesma semântica para aquele domínio. Tradicionalmente, tal tarefa era realizada manualmente por um especialista, tornando-a custosa e cansativa pois, este deveria conhecer bem os esquemas e o domíınio em que estes estavam inseridos. Atualmente, esse processo é assistido por métodos semi-automáticos de casamento de esquemas. Os métodos atuais utilizam diversas heurísticas para gerar os casamentos e muitos deles compartilham uma modelagem em comum: constroem uma matriz de similaridade entre os elementos a partir de funções chamadas matchers e, baseados nos valores dessa matriz, decidem segundo algum critério quais os casamentos válidos. Esta dissertação apresenta um método baseado em aprendizado ativo que utiliza a matriz de similaridade gerada pelos matchers e um algoritmo de aprendizagem de máquina, além de intervenções de um especialista, para gerar os casamentos. O método apresentado se diferencia dos outros por não possuir uma heurística fixa e por utilizar a experiência do especialista apenas quando necessário. Em nossos experimentos, avaliamos o método proposto contra um baseline em dois datasets: o primeiro que foi o mesmo utilizado pelo baseline e o segundo contendo esquemas propostos em um benchmark para integração de esquemas. Mostramos que o baseline alcança bons resultados no dataset em que foi originalmente testado, mas que sua estratégia fixa não é tão efetiva para outros esquemas. Por outro lado, o método baseado em aprendizado ativo que propomos se mostra consistente em ambos os datasets, alcançando, em média, um valor de medida-F igual a 0, 64.
10

Aprendizado de máquina multirrótulo: explorando a dependência de rótulos e o aprendizado ativo / Multi-label machine learning: exploring label dependency and active learning

Cherman, Everton Alvares 10 January 2014 (has links)
Métodos tradicionais de aprendizado supervisionado, chamados de aprendizado monorrótulo, consideram que cada exemplo do conjunto de dados rotulados está associado a um único rótulo. No entanto, existe uma crescente quantidade de aplicações que lidam com exemplos que estão associados a múltiplos rótulos. Essas aplicações requerem métodos de aprendizado multirrótulo. Esse cenário de aprendizado introduz novos desafios que demandam abordagens diferentes daquelas tradicionalmente utilizadas no aprendizado monorrótulo. O custo associado ao processo de rotulação de exemplos, um problema presente em aprendizado monorrótulo, é ainda mais acentuado no contexto multirrótulo. O desenvolvimento de métodos para reduzir esse custo representa um desafio de pesquisa nessa área. Além disso, novos métodos de aprendizado também devem ser desenvolvidos para, entre outros objetivos, considerar a dependência de rótulos: uma nova característica presente no aprendizado multirrótulo. Há um consenso na comunidade de que métodos de aprendizado multirrótulo têm a capacidade de usufruir de melhor eficácia preditiva quando considerada a dependência de rótulos. Os principais objetivos deste trabalho estão relacionados a esses desafios: reduzir o custo do processo de rotulação de exemplos; e desenvolver métodos de aprendizado que explorem a dependência de rótulos. No primeiro caso, entre outras contribuições, um novo método de aprendizado ativo, chamado score dev, é proposto para reduzir os custos associados ao processo de rotulação multirrótulo. Resultados experimentais indicam que o método score dev é superior a outros métodos em vários domínios. No segundo caso, um método para identificar dependência de rótulos, chamado UBC, é proposto, bem como o BR+, um método para explorar essa característica. O método BR+ apresenta resultados superiores a métodos considerados estado da arte / Traditional supervised learning methods, called single-label learning, consider that each example from a labeled dataset is associated with only one label. However, an increasing number of applications deals with examples that are associated with multiple labels. These applications require multi-label learning methods. This learning scenario introduces new challenges and demands approaches that are different from those traditionally used in single-label learning. The cost of labeling examples, a problem in single-label learning, is even higher in the multi-label context. Developing methods to reduce this cost represents a research challenge in this area. Moreover, new learning methods should also be developed to, among other things, consider the label dependency: a new characteristic present in multi-label learning problems. Furthermore, there is a consensus in the community that multi-label learning methods are able to improve their predictive performance when label dependency is considered. The main aims of this work are related to these challenges: reducing the cost of the labeling process; and developing multi-label learning methods to explore label dependency. In the first case, as well as other contributions, a new multi-label active learning method, called score dev, is proposed to reduce the multi-labeling processing costs. Experimental results show that score dev outperforms other methods in many domains. In the second case, a method to identify label dependency, called UBC, is proposed, as well as BR+, a method to explore this characteristic. Results show that the BR+ method outperforms other state-of-the-art methods

Page generated in 0.0844 seconds