• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detection of a Peptide Hormone - Somatostatin - Label-free Split-aptameric Probes

Dowis, Charles A 01 January 2020 (has links)
Peptide hormones are important biomolecules that transduce downstream effects such as cell proliferation, regulation, and gene expression. Their levels have been upregulated in various disorders such as cancer, yet detection methods are lacking. We designed two split aptamer-based assays for the detection of a peptide hormone – Somatostatin (SST) – with different signal readouts: fluorescent readout based on light-up aptamers and the colorimetric readout of ABTS peroxidation from a G-quadruplex. We used an already selected split-aptamer –SSTA5–for SST for our designs and we had expected the developed detection systems to exhibit detection and quantification capabilities that would hopefully allow their use for SST monitoring in clinical samples. However, our experiments did not support the hypothesis of this project and SST was not able to be detected using either of our fluorescent or colorimetric methods. To determine if the SSTA5 aptamer could bind SST appropriately, Förster resonance energy transfer (FRET) was used. We verified that there was no energy transfer between two covalently-attached light-sensitive molecules (one attached to each part of the split SSTA5 aptamer); thus, we theorize that the aptamer does not hybridize in the presence of the tetra decapeptide SST. Therefore selection of another, more appropriate, aptamer for SST will be needed for further aptameric-based detection methods. Once this is accomplished, our methodologies could be re-applied for detection of SST which could lead to real-time detection of essential hormonal levels in patients.

Page generated in 0.1113 seconds