51 |
An evaluation of recirculating artificial stream designs for acute toxicity testing using two South African Ephemeroptera species exposed to sodium sulphateBinder, Markus January 2000 (has links)
Three artificial stream designs, termed Large Artificial Stream Units (LASUs), Raceways, and Channels, at two major scales (1700 L, 12.5 L and 20 L recirculated volume) were developed at the Institute for Water Research, Rhodes University, Grahamstown, in order to explore the possibilities of using indigenous rheophilic macroinvertebrates in routine toxicity tests. This study compared these systems, using 96h-EC50 values from sodium sulphate toxicity tests as the experimental response. Two local Ephemeroptera (Leptophlebiidae: Adenophlebia auriculata Eaton, and Baetidae: Afroptilum sudafricanum Lestage) were evaluated for their suitability in routine toxicity tests; and the possible effects of elevated salinity levels in South African rivers on the test species were assessed. Two sets of experiments with each mayfly species were conducted, following an unreplicated regression design. Dechlorinated tap water was used as the water source. Experiments in the Channels were repeated to determine experimental variability. Results were compared statistically by testing for overlap of 95% confidence limits (95%Cls) of EC50 values. The differences between A. auriculata EC50 values in the different systems were statistically significant (no overlap of 95%CLs), but they were not more variable than has been considered normal for biological systems (Coefficient of variation 20.1 %; ratio of greatest EC50 / smallest EC50 1.63). The differences were not related to the scale or the average current velocity characteristic of each stream design (average current velocity LASUs - Raceways - Channels 0.090 - 0.083 - 0.038 m/s). The Channels proved to be most efficient with regard to practical performance as they are portable and easily transportable, user-friendly, reliable, splash-free, cost effective to construct, and can easily be adapted to specific requirements. These systems are therefore recommended for regular use. The suitability of the two mayfly species for routine toxicity testing was evaluated. A. auriculata EC50 values showed a significant negative correlation with the corresponding average body-size (range 1476 - 1610 μm, mean 1555 μm). The different average body-sizes probably reflected the abundance of a certain size range present in the Palmiet River at the time of collection. Both species reacted similarly to Na₂S0₄ (similar slopes of the toxicity curves), identifying this salt as a slow acting toxicant. A. sudafricanum populations were more sensitive to Na₂S0₄ (EC50 3.404 g/L) than A. auriculata (EC50 8.090 g/L), probably because of its smaller body-size (mean 709 μm) and a lack of extremely tolerant individuals. In comparison to other freshwater macro invertebrates, including the standard toxicity test organism Daphnia spp., both mayfly species seemed to be moderately tolerant of Na₂S0₄; therefore there was no particular advantage to using these indigenous taxa rather than Daphnia spp. An assessment of the effects of elevated salinity/TDS levels on the test taxa yielded preliminary insights. A NaCI-EC50 for A. sudafricanum could be extrapolated and suggested a higher sensitivity to Na₂S0₄ than to NaCl. When Na₂S0₄ EC50 values of both species were compared to selected TDS levels of South African rivers, 4. auriculata would mostly not be affected, but A. sudafricanum might occasionally suffer from sub-lethal effects, depending on the sulphate proportion of the TDS. The South African guideline for TDS seemed to protect both species sufficiently.
|
52 |
Understanding The Invasion Of Florida's Intertidal Crassostrea Virginica Reefs By Non-native Marine Invertebrate SpeciesNash, Ethan Fletcher 01 January 2011 (has links)
Predicting the locations of new biological invasions has become a high priority for biologists as well as trying to predict if newly introduced species will become damaging to native ecosystems. Reefs of the eastern oyster Crassostrea virginica in Mosquito Lagoon, Florida have been highly disturbed in recent years resulting in dead reefs (piles of dead, disarticulated shells) some of which have been restored. I conducted oyster reef surveys for non-native invertebrates to determine if disturbance on these oyster reefs might assist invasion by two species, Mytella charruana and Perna viridis, recently introduced to the southeastern coast of the United States. Next, I investigated if M. charruana's temperature and aerial exposure tolerance limits may allow for it to establish permanently on intertidal oyster reefs. Temperature and aerial exposure tolerance experiments were conducted and oyster reef temperatures were collected. Oyster reef surveys could not predict if reef disturbance is assisting in the invasion process because only two non-native individuals (P.viridis) were found, one on a restored reef and one on a natural (reference) reef. Tolerance experiments showed that some Mytella charruana survived even after 7 days of 8??C temperatures if the mussels are exposed to air for 4 hours or less per day. Mytella charruana had near 0% survival after 4 hours of 44??C. However, only disturbed reefs reached this temperature in the field. It is likely that M. charruana could survive in the low intertidal zone on restored or reference reefs. This information is important for understanding the introduction of M. charruana in Mosquito Lagoon and also provides a data set of temperature tolerances for better understanding of whether the species might be able to invade other areas.
|
53 |
Community responses of aquatic macroinvertebrates to heavy metals in laboratory and outdoor experimental streamsClements, William H. January 1988 (has links)
This research describes aquatic macroinvertebrate community responses to heavy metals (copper, zinc) in experimental streams and at metal-impacted sites in the field. Experiments employed substrate-filled trays which were colonized in the field and then transferred to laboratory or outdoor streams.
Laboratory experiments conducted over three seasons showed that acute (96 h) exposure to copper (Cu) at 15-32 μg Cu/L significantly reduced macroinvertebrate abundance and number of taxa during each season. Owing to differences in sensitivity among taxa, the percent composition of dominant groups varied between control and dosed streams. Mayflies were quite sensitive to Cu, particularly during the summer when water temperatures were higher.
Community responses to Cu and Zn in outdoor experimental streams were similar to those observed at metal-impacted sites in the field. Control streams and field reference Stations were dominated by mayflies and Tanytarsini chironomids. In contrast, treated Streams and impacted field sites were dominated by net-Spinning caddisflies (Hydropsychidae) and Orthocladiini chironomids. The similarity of these experimental results to those observed in the field suggest that macroinvertebrate community responses to heavy metals are highly predictable.
Responses of these communities to Cu were greatly influenced by water quality. Effects were more severe in New River Streams, where water hardness and alkalinity were low, compared to Clinch River Streams, where hardness and alkalinity were higher. In soft water Streams, abundance was reduced by 84% after 10 d exposure to Cu (measured concentration = 13 μg/L). In contrast, abundance was reduced by only 45% in hard water Streams after 10 d at Similar Cu levels. These results demonstrate the importance of accounting for water quality characteristics of receiving systems when establishing site-specific criteria for metals.
Chronic exposure (14 d) to sublethal levels of Cu (< 6 μg/L) increased Vulnerability of caddisflies (Hydropsyche morosa and Chimarra sp.) to predation by the Stonefly, Paragnetina fumosa. Caddisflies were also the major component of stonefly diets and were consumed Significantly more frequently in dosed Streams than controls. These results demonstrate that single Species bioassays were inadequate for predicting effects of toxicants on community level processes. / Ph. D.
|
54 |
Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased MortalityTurner, Brian Christopher 17 May 2017 (has links)
Lethal biotic interactions strongly influence the potential for aquatic non-native species to establish and endure in habitats to which they are introduced. Predators in the recipient area, including native and previously established non-native predators, can prevent establishment, limit habitat use, and reduce abundance of non-native species. Management efforts by humans using methods designed to cause mass mortality (e.g., trapping, biocide applications) can reduce or eradicate non-native populations. However, the impacts of predator and human induced mortality may be mitigated by the behavior or population-level responses of a given non-native species.
My dissertation examined the responses of non-native aquatic species to the risk of predation by novel (i.e., no previous exposure) predators in the recipient community and indicators of potential compensatory responses by non-native populations to increased mortality resulting from removal efforts. My dissertation addresses four primary questions. 1) Can first generation, naïve invaders recognize and defend against predators found within the region of invasion through the expression of inducible defenses? 2) Can the overcompensatory potential of a population be predicted through examinations of intraspecific interactions of individuals from the population? 3) What is the relationship between removal effort outcome (i.e., successful or unsuccessful reduction of the target population) and compensatory population responses? 4) Is there a relationship between characteristics of removal efforts that are typically available to managers (e.g., target area size, target area connectivity, removal methodology) and compensatory population responses that could indicate the relative likelihood of compensation resulting from removal efforts?
An invading species should be more likely to establish if it can successfully identify and defend against predators in the recipient range, such as through the expression of inducible defenses. Inducible defenses are behavioral or physiological changes that reduce an organism's susceptibility to predation. Through a series of laboratory experiments, I tested whether inducible defenses, in the form of increased burrowing depth, may have benefited the early stage of invasion of Nuttallia obscurata (purple varnish clam), an established Northeast Pacific invader. Specimens of N. obscurata were collected from introduced populations in the Northeast Pacific and from a native population in Japan. The clams were exposed to chemical and physical cues from Northeast Pacific crab predators, including the native Metacarcinus magister (Dungeness crab), an abundant and frequent predator of N. obscurata. While introduced N. obscurata increased their burrowing depth in the physical presence of M. magister, clams collected from their native range showed no such response. This lack of increased burrowing depth by naïve clams in response to a predator native to the newly invaded range, but a significant increase in depth for clams from populations established in the range suggests that while inducible defenses likely did not contribute to the initial establishment of N. obscurata in the Northeast Pacific, they may contribute to their continued persistence and expansion in their introduced range.
Some efforts to reduce invasive populations have paradoxically led to population increases. This phenomenon, referred to as overcompensation, occurs when strong negative density-dependent interactions are reduced through increased mortality within a population, resulting in an increase in the population's recruitment rate sufficient to increase the population's overall abundance. Increases in a population's recruitment rate can result from reduced cannibalism of juveniles resulting in lower mortality of new recruits, from increased adult reproductive output, which increases the number of potential recruits, or from reductions in size and/or age at maturity of the unharvested population, which increases the number of reproductive individuals. I predicted the overcompensatory potential of a population of Carcinus maenas (European green crab) in Bodega Harbor, California, using a series of laboratory and field experiments examining intraspecific pressures of adults on juveniles in the population. This measure of intraspecific pressure was used to predict the overcompensatory potential of the population in response to increased mortality from ongoing removal efforts. This prediction was then assessed using pre- and post-removal surveys of juvenile recruitment in Bodega Harbor compared to nearby populations, testing for evidence of overcompensation. While adult C. maenas in Bodega Harbor had limited negative impacts on juveniles, I concluded it was unlikely to result in overcompensation. Relative juvenile abundance did not statistically increase in removal compared to reference populations, consistent with my conclusion from the experiments.
Increases in recruitment rates can occur as a result of efforts to remove non-native species. This increase in recruitment can result in overcompensation, but more commonly results in compensation, where recruitment rates increase relative to pre-removal recruitment but does not result in in the population's abundance exceeding pre-removal levels. However, a detailed and accurate prediction of the response of a population to harvest is time consuming and data intensive. This is not feasible for most efforts to eradicate non-native species, which have the greatest chance of success when enacted rapidly after detection. For my final chapter, I performed a literature review and accompanying statistical analysis to determine if typically available information related to the removal effort (site size, site connectivity, and removal technique) could be used to determine increased risk of compensation for a given effort to remove aquatic invasive species. Compensation was closely linked to unsuccessful removal efforts and was observed only among efforts utilizing physical removal methods. However, the frequency with which compensation occurred varied with the exact technique employed, occurring most frequently in removal utilizing electrofishing. Additionally, evidence of compensation was more frequent among larger removal areas with variable connectivity. While other predictors (temperature, effort, etc) might add to the predicative power, the findings of the review provide criteria for managers to determine the relative risk of compensation prior to the start of removal.
Further understanding of how invasive species respond to lethal biotic interactions, including anthropogenically mediated control measures, can aid in assessing the risk of invasion for a given species and inform managers of the risk of complications resulting from removal efforts. While inducible defenses may contribute to the long-term success of an introduced species in their recipient range, my findings did not support the idea that inducible defenses triggered by predator cues contributed to their initial introduction in this case. However, research on other non-native species and offspring of previously naïve prey would allow for a clearer picture of the role of inducible defenses in the invasion process. Compensation resulting from removal efforts does not guarantee failure, and certain characteristics of removal efforts seem to indicate increased risk of compensation. Together these components help identify how biotic interactions surrounding mortality risk of an invading species help shape the trajectory of invasion.
|
55 |
Ballast Water Management Convention, 2004: Towards Combating Unintentional Transfer of Harmful Aquatic Organisms and Pathogens.Lawal, Sabitiyu Abosede 25 August 2011 (has links)
The introduction of harmful aquatic organisms and pathogens transferred through ships' ballast water and sediments from one coastal region to another has ecological, economic, environmental, and human impacts. The international community, through numerous binding and non-binding instruments, also sought to combat this problem. Ultimately, the International Convention for the Control and Management of Ships' Ballast Water and Sediments, 2004 was adopted by the International Maritime Organization as the dedicated legal regime intended to prevent, control and ultimately eradicate the introduction and spread of harmful aquatic organisms and pathogens through ships' ballast water and sediments. By its Regulations, the Convention sets out coastal/port and flag State obligations along with subsequently adopted technical Guidelines by which to implement it. Despite the importance of this problem, the Convention has not entered into force. This study assesses the potential of the Convention to promote achievement of the goal to prevent and eliminate this source of marine and biodiversity degradation and destruction. The study finds that the Convention constitutes a useful global legal regime within which steps can be taken to establish uniform ground rules, standards and practices to combat the introduction, transfer and spread of harmful aquatic organisms and pathogens across the world's coastal and marine areas. Nevertheless, its potential is undermined, among others, by the exemption of some categories of ships from its application, financial costs, especially to developing States, of implementing its requirements, and by the fact that its provisions do not account for other salient sources by which harmful aquatic organisms and pathogens are spread. Suggestions are made to encourage more ratification to bring the Convention into force and on remedying some of the weaknesses in the formulation of its rules. It is concluded that if it is ratified by sufficient and wide number of States as well as conscientiously implemented by States, adopting additional national laws and policies to regulate areas which are not addressed by the Convention, it would facilitate progress in the global effort to improve the protection of marine environments, ecosystems, and biodiversity, specifically, as regards the contribution towards combating the introduction and transfer of harmful aquatic organisms and pathogens via ships' ballast water and sediments. / The threat posed by harmful aquatic organisms and pathogens to the society at large is devastating. The Ballast Water Management Convention 2004 was adopted to remedy this problem. Though the Convention has potential to combat the threat, it has some ambiguities. This study concludes that if the provisions of the Convention, coupled with the recommendations made in this study are implemented at State level, we will have an international community that is free from the menace posed by harmful aquatic organisms and pathogens introduced through ships' ballast water and sediments, and a safer marine ecosystems will be ensued for us in due time.
|
56 |
Development of a sediment toxicity test for the South African coastal environment using the endemic amphipod, Grandidierella lignorum Barnard 1935 (Amphipoda: Aoridae).Masikane, Ntuthuko Fortune. 16 September 2014 (has links)
Contaminants introduced in solution to coastal waters eventually accumulate in sediment. Pollution by these contaminants is only evident when biological effects occur. Geochemical procedures lack the ability to identify biological effects of pollution. Biological methods (i.e. community structure analyses and/or bioassays) are currently the best available techniques for pollution assessment. Standardised and locally relevant protocols for pollution assessment are lacking in many developing countries, including South Africa. This study aims to develop a sediment toxicity testing protocol using an amphipod species endemic to South Africa, Grandidierella lignorum. Initial research focussed on establishing ranges of physico-chemical parameters (i.e. salinity, temperature, sediment grain size and organic matter content) within which sediment toxicity tests should be performed. The sensitivity of the amphipod was then determined by exposing the amphipod to cadmium, copper and zinc at various salinities. Lastly, the amphipod was exposed to effluents (to test the amphipod’s sensitivity in water only tests) and whole sediment (to tests the amphipod’s sensitivity to solid phase material). G. lignorum tolerates salinities between 0 and 56, but prefers salinities between 7 and 42. Preferred salinity range is modified by temperature, with salinity of 42 becoming less tolerable. Salinities between 7 and 35 are most preferred at 10-25°C. G. lignorum prefers fine- (27.48±12.13%), medium- (25.11±12.99%) and coarse-grained sand (21.45±8.02%). Sediment with low (≤2%) organic matter content is most preferable, regardless of sediment grain size or type of organic matter (protein-rich vs. carbohydrate-rich).
Cadmium toxicity decreased with increasing salinity (LC₅₀: 0.34 ± 0.17 mg l⁻¹ (salinity of 7), 0.73 ± 0.05 mg l⁻¹ (salinity of 21) and 1.08 ± 0.49 mg l⁻¹ (salinity of 35)). Zinc toxicity increased with decreasing salinity (1.56 ± 0.33 mg l⁻¹ at a salinity of 21 to 0.99 ± 0.13 mg l⁻¹ at a salinity of 7) and with increasing salinity (from salinity of 21 to 0.82 ± 0.19 mg l⁻¹ at a salinity of 35). Copper toxicity did not differ significantly with salinity and ranged between 0.72 ± 0.18 mg l⁻¹ (salinity of 35) and 0.89 ± 0.24 mg l⁻¹ (salinity of 21). Toxicity testing using Grandidierella lignorum should be performed in coarse- to fine-grained sediment at salinities of 7 - 35, at 10 – 25°C. Amphipods do not need to be fed during toxicity testing. A control chart using cadmium as a reference toxicant was established to determine the acceptability of toxicity results. Toxicity test results should be accepted when cadmium toxicity falls between 0.49 and 4.02 mg l⁻¹. The amphipod responded consistently to effluents and was able to discriminate polluted and unpolluted sediment in Durban Bay. Recommendations for refining the effluent and sediment toxicity test are suggested. / Ph.D. University of KwaZulu-Natal, Durban 2013.
|
57 |
The fate and effects of human pharmaceuticals in the aquatic environment.Williams, Michael January 2007 (has links)
There is relatively little known about the fate of human pharmaceuticals once they are released into the aquatic environment and what adverse impacts these compounds have on exposed aquatic organisms. Both of these factors are essential in defining the potential risk pharmaceuticals pose in the aquatic environment. For this project up to 14 human therapeutic agents were selected as representative compounds to assess both their fate and effects within model aquatic systems. Considering sediments often serve as a repository for aquatic contaminants, the interaction of the selected pharmaceuticals with sediment was assessed. The sorption of the selected pharmaceuticals was found to be highly variable. Furthermore, the solution pH and ionic strength, due to Ca2+, were found to exert a large degree of influence on the extent of sorption observed. These solution parameters, among others, may therefore make it difficult to predict the fate of pharmaceuticals, in terms of their association with sediments, using standardised assessment methods alone. There is an extensive pool of knowledge on pharmaceuticals, in terms of their pharmacological profile, so their distribution within the human body (using the volume of distribution or VD) was compared with their distribution within a sediment / water system (using the partition coefficient or Kd). The correlation between the VD and Kd indicated this relationship provided a reasonable basis for estimating the distribution of drugs within the test sediment / water systems. This finding suggests that further exploration of the use of pharmacological data in understanding the potential fate of pharmaceuticals in aquatic systems is warranted. The extent of the pharmaceuticals respective desorption values was also found to be highly variable within a standard test system. Further analysis on the desorption of carbamazepine, an anti-epileptic drug, was undertaken using an isotopic dilution technique. Observations from the isotopic dilution study indicated that both contact time with sediment and the quality of organic carbon could play an important role in the potential for sediments to irreversibly sorb carbamazepine present in aquatic systems. The desorption hysteresis observed for the other pharmaceuticals also indicates considerable effort is still required to address the issue of whether sediments can be a means of reducing exposure of pharmaceuticals to aquatic organisms (a “sink”) or a means of increasing exposure to sediment-dependent organisms (a “source”). The necessity for further work on investigating the role that sorption with sediments may play in the fate and effects of human pharmaceuticals was highlighted by a series of ecotoxicological assays in both sediment and solution-only systems. Sediment-dwelling freshwater midges, Chironomus tepperi, were exposed to carbamazepine in both short- and long-term assays. Wet weight was found to be significantly reduced during short-term assays, while the development of C. tepperi larvae was found to be significantly inhibited when exposed to spiked sediment, over a longer exposure period. For these assays, the aqueous phase may have been a more important route of exposure of carbamazepine for the midges. This study has indicated that sediments are likely to play an important role in the fate of pharmaceuticals and, subsequently, their effects. However, considerably more effort is required to assess the role sediments have and how this knowledge can be linked with current regulatory ecological risk assessments. / http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1298389 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2007
|
58 |
The fate and effects of human pharmaceuticals in the aquatic environment.Williams, Michael January 2007 (has links)
There is relatively little known about the fate of human pharmaceuticals once they are released into the aquatic environment and what adverse impacts these compounds have on exposed aquatic organisms. Both of these factors are essential in defining the potential risk pharmaceuticals pose in the aquatic environment. For this project up to 14 human therapeutic agents were selected as representative compounds to assess both their fate and effects within model aquatic systems. Considering sediments often serve as a repository for aquatic contaminants, the interaction of the selected pharmaceuticals with sediment was assessed. The sorption of the selected pharmaceuticals was found to be highly variable. Furthermore, the solution pH and ionic strength, due to Ca2+, were found to exert a large degree of influence on the extent of sorption observed. These solution parameters, among others, may therefore make it difficult to predict the fate of pharmaceuticals, in terms of their association with sediments, using standardised assessment methods alone. There is an extensive pool of knowledge on pharmaceuticals, in terms of their pharmacological profile, so their distribution within the human body (using the volume of distribution or VD) was compared with their distribution within a sediment / water system (using the partition coefficient or Kd). The correlation between the VD and Kd indicated this relationship provided a reasonable basis for estimating the distribution of drugs within the test sediment / water systems. This finding suggests that further exploration of the use of pharmacological data in understanding the potential fate of pharmaceuticals in aquatic systems is warranted. The extent of the pharmaceuticals respective desorption values was also found to be highly variable within a standard test system. Further analysis on the desorption of carbamazepine, an anti-epileptic drug, was undertaken using an isotopic dilution technique. Observations from the isotopic dilution study indicated that both contact time with sediment and the quality of organic carbon could play an important role in the potential for sediments to irreversibly sorb carbamazepine present in aquatic systems. The desorption hysteresis observed for the other pharmaceuticals also indicates considerable effort is still required to address the issue of whether sediments can be a means of reducing exposure of pharmaceuticals to aquatic organisms (a “sink”) or a means of increasing exposure to sediment-dependent organisms (a “source”). The necessity for further work on investigating the role that sorption with sediments may play in the fate and effects of human pharmaceuticals was highlighted by a series of ecotoxicological assays in both sediment and solution-only systems. Sediment-dwelling freshwater midges, Chironomus tepperi, were exposed to carbamazepine in both short- and long-term assays. Wet weight was found to be significantly reduced during short-term assays, while the development of C. tepperi larvae was found to be significantly inhibited when exposed to spiked sediment, over a longer exposure period. For these assays, the aqueous phase may have been a more important route of exposure of carbamazepine for the midges. This study has indicated that sediments are likely to play an important role in the fate of pharmaceuticals and, subsequently, their effects. However, considerably more effort is required to assess the role sediments have and how this knowledge can be linked with current regulatory ecological risk assessments. / http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1298389 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2007
|
59 |
The fate and effects of human pharmaceuticals in the aquatic environment.Williams, Michael January 2007 (has links)
There is relatively little known about the fate of human pharmaceuticals once they are released into the aquatic environment and what adverse impacts these compounds have on exposed aquatic organisms. Both of these factors are essential in defining the potential risk pharmaceuticals pose in the aquatic environment. For this project up to 14 human therapeutic agents were selected as representative compounds to assess both their fate and effects within model aquatic systems. Considering sediments often serve as a repository for aquatic contaminants, the interaction of the selected pharmaceuticals with sediment was assessed. The sorption of the selected pharmaceuticals was found to be highly variable. Furthermore, the solution pH and ionic strength, due to Ca2+, were found to exert a large degree of influence on the extent of sorption observed. These solution parameters, among others, may therefore make it difficult to predict the fate of pharmaceuticals, in terms of their association with sediments, using standardised assessment methods alone. There is an extensive pool of knowledge on pharmaceuticals, in terms of their pharmacological profile, so their distribution within the human body (using the volume of distribution or VD) was compared with their distribution within a sediment / water system (using the partition coefficient or Kd). The correlation between the VD and Kd indicated this relationship provided a reasonable basis for estimating the distribution of drugs within the test sediment / water systems. This finding suggests that further exploration of the use of pharmacological data in understanding the potential fate of pharmaceuticals in aquatic systems is warranted. The extent of the pharmaceuticals respective desorption values was also found to be highly variable within a standard test system. Further analysis on the desorption of carbamazepine, an anti-epileptic drug, was undertaken using an isotopic dilution technique. Observations from the isotopic dilution study indicated that both contact time with sediment and the quality of organic carbon could play an important role in the potential for sediments to irreversibly sorb carbamazepine present in aquatic systems. The desorption hysteresis observed for the other pharmaceuticals also indicates considerable effort is still required to address the issue of whether sediments can be a means of reducing exposure of pharmaceuticals to aquatic organisms (a “sink”) or a means of increasing exposure to sediment-dependent organisms (a “source”). The necessity for further work on investigating the role that sorption with sediments may play in the fate and effects of human pharmaceuticals was highlighted by a series of ecotoxicological assays in both sediment and solution-only systems. Sediment-dwelling freshwater midges, Chironomus tepperi, were exposed to carbamazepine in both short- and long-term assays. Wet weight was found to be significantly reduced during short-term assays, while the development of C. tepperi larvae was found to be significantly inhibited when exposed to spiked sediment, over a longer exposure period. For these assays, the aqueous phase may have been a more important route of exposure of carbamazepine for the midges. This study has indicated that sediments are likely to play an important role in the fate of pharmaceuticals and, subsequently, their effects. However, considerably more effort is required to assess the role sediments have and how this knowledge can be linked with current regulatory ecological risk assessments. / http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1298389 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2007
|
60 |
Comparação ecotoxicológica de princípios ativos de repelentes para invertebrados aquáticos irradiados e não irradiados com radiação gama / Ecotoxicological comparison of active ingredients of repellents for aquatic invertebrates irradiated and non-irradiated with gamma radiationGIMILIANI, GIOVANA T. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:53Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:31Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
Page generated in 0.0543 seconds