• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fungal DAHP synthases evolution and structure of differently regulated isoenzymes /

Hartmann, Markus. Unknown Date (has links) (PDF)
University, Diss., 2002--Göttingen.
2

Kristallstrukturuntersuchungen zum Katalyse- und Regulationsmechanismus der Tyrosin-regulierten 3-Deoxy-D-arabino-Heptulosonat-7-Phosphat-Synthase aus Saccharomyces cerevisiae

König, Verena. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Göttingen.
3

Unravelling the Evolution of Allosteric Regulation in 3-Deoxy-D-arabino-heptulosonate 7-phosphate Synthase

Cross, Penelope Jane January 2012 (has links)
The enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first reaction in the shikimate pathway, leading to the biosynthesis of aromatic compounds including the aromatic amino acids. The catalytic activity of DAH7PS is regulated through feedback inhibition and is the major control point for the pathway. DAH7PSs are divided into two families, type I and type II, based on molecular weight and amino acid sequence. Type I DAH7PSs can be further divided based on sequence similarity. All DAH7PS enzymes with their crystal structures solved share a basic (β/α)₈-barrel fold in which the key catalytic components are housed. Furthermore, all structurally characterised DAH7PSs, except Pyrococcus furiosus DAH7PS (PfuDAH7PS) and Aeropyrum pernix DAH7PS, have recruited extra structural motifs that are implicated in allosteric regulation. However, there are significant differences in the additional structural elements. This thesis investigates the hypothesis that the diverse regulation strategies for controlling DAH7PS activity have evolved by domain recruitment, whereby regulatory domains have been added to the catalytic barrel. Chapter 2 describes the functional characterisation of the type Iβ Thermotoga maritima DAH7PS (TmaDAH7PS), and the exploration of its response to inhibitors. The catalytic activity of TmaDAH7PS was found to be substantially inhibited by tyrosine (Tyr) and to a lesser extent, phenylalanine (Phe). The putative regulatory domain previously identified as a ferredoxin-like domain was recognised as an aspartate kinase-chorismate-mutase-tyrA (prephenate dehydrogenase) or ACT domain. Chapter 3 describes the characterisation of TmaDAH7PS with the N-terminal domain removed. The truncated enzyme was found to be more catalytically active than wild-type TmaDAH7PS and insensitive to inhibition by the aromatic amino acids, Tyr, Phe and tryptophan. Apart from the truncation of the ACT domain, the crystal structure of truncTmaDAH7PS showed no major changes to the monomer structure when compared to wild-type TmaDAH7PS. However, truncTmaDAH7PS crystallises as a dimer, unlike wild-type TmaDAH7PS. In Chapter 4, the solution of the crystal structure of TmaDAH7PS with Tyr bound is presented. Tyr binding was shown to induce a significant conformational change, and Tyr is observed to bind at the interface between the ACT domains from two diagonally located monomers of the tetramer. The major reorganisation of the regulatory domain with respect to the barrel observed in the crystal structure, was confirmed by small angle X-ray scattering. The closed conformation adopted by the protein on Tyr binding physically gates the neighbouring barrel and blocks substrate entry into the active site. Chapter 5 explores the interactions between TmaDAH7PS and the allosteric inhibitor, Tyr. The residues His29 and Ser31, which form hydrogen bonds with the hydroxyl moiety of the Tyr ligand, were examined for their impact on the sensitivity and selectivity of the enzyme for the inhibitors Tyr and Phe. The hydroxyl side chain of Ser31 was found to be important for both the preferential inhibition by Tyr over Phe and the inhibitory mechanism. His29 (the hydrogen-bonding partner of Ser31) appears to play a secondary role in determining ligand selectivity and the relative positioning of these two residues is crucial to the inhibition of the enzyme. Chapter 6 evaluates the transferability of allosteric control of catalytic activity. The ACT domain of TmaDAH7PS was fused onto the barrel of the unregulated PfuDAH7PS. This chimeric enzyme was found to be catalytically active, inhibited by Tyr (although less sensitive) and preliminary crystallographic results show inhibition occurs via the same conformational change observed for wild-type TmaDAH7PS.
4

Using substrate analogues to probe the mechanisms of two biosynthetic enzymes : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry at Massey University, Turitea, Palmerston North, New Zealand

Pietersma, Amy Lorraine January 2007 (has links)
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthase and 3-deoxy-Dmanno- octulosonate 8-phosphate synthase (KDO8P) synthase are two enzymes that catalyse very similar reactions. DAH7P synthase is the first enzyme of the shikimate pathway and catalyses the condensation reaction between the four-carbon sugar erythrose 4-phosphate (E4P) 1 and the three-carbon sugar phosphoenolpyruvate (PEP) 2 to give the seven-carbon sugar DAH7P 3. KDO8P synthase catalyses a similar condensation reaction between the five-carbon sugar arabinose 5-phosphate (A5P) 8 and PEP 2 to give the eight-carbon sugar KDO8P 9. Early mechanistic studies have shown the reaction mechanisms of these two enzymes to be very similar and structural and phylogenic analysis has suggested that the two enzymes share a common ancestor. However, there are differences between the two enzymes that have not been explained by the current literature. Whereas all DAH7P synthases require a divalent metal ion for activity, there exists both metallo and non-metallo KDO8P synthases. As well as this, there is the difference in substrate specificity. The natural substrate of KDO8P synthase, A5P, is one carbon longer and has the opposite C2 stereochemistry to E4P, the natural substrate of DAH7P synthase. This study investigates the role of the C2 and C3 hydroxyl groups of E4P and A5P in the enzyme catalysed reactions. The E4P analogues 2-deoxyE4P 38 and 3-deoxyE4P 39 have been synthesised from [beta]-hydroxy-[gamma]-butyrolactone and malic acid respectively. The two analogues were tested as substrates for DAH7P synthase from a variety of organisms, including N. meningitidis, the purification and characterisation of which was carried out during the course of these studies. It was found that both analogues were substrates for DAH7P synthase. 2-DeoxyE4P was found to be the best alternative substrate for DAH7P synthase to date. The analogous study was carried out on KDO8P synthase from N. meningitidis with 2- deoxyR5P 34 and 3-deoxyA5P 40. It was found that removal of the C2 and C3 hydroxyl groups of A5P was much more catastrophic for the KDO8P synthase catalysed reaction. Commercially available 2-deoxyR5P was found to be a very poor substrate, whereas 3-deoxyA5P, which was prepared according to a literature procedure was not a substrate. The difference in substrate specificities of DAH7P synthase and KDO8P synthase is consistent with the hypothesis that despite their similarities, these two related enzymes have different mechanisms. The key step for DAH7P synthase appears to be coordination of the E4P carbonyl to the divalent metal. The metal appears to play a less important role in the KDO8P synthase reaction and the key step is the correct orientation of A5P in the active site.
5

Characterisation and Control of 3-Deoxy-D-arabino-heptulosonate 7-phosphate Synthase from Geobacillus sp

Othman, Mohamad January 2014 (has links)
3-Deoxy-D-arabino heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first step of the shikimate pathway, responsible for the biosynthesis of aromatic amino acids. This pathway is found in microorganisms, plants and apicomplexan parasites and its absence in mammals makes it a viable target for antimicrobial drug design. DAH7PS enzymes differ in the regulatory machinery that decorates the catalytic (β/α)8 barrel. Some DAH7PS enzymes are fused to chorismate mutase (CM), another enzyme in the shikimate pathway. This fusion protein is allosterically regulated by chorismate (CA) or prephenate (PA), the precursor of tyrosine and phenylalanine. It has been suggested that DAH7PS enzymes evolved these extensions to the core barrel for the sole purpose of regulation. Geobacillus sp DAH7PS (GspDAH7PSWT) is a thermophilic type Iβ DAH7PS enzyme with an N-terminal CM domain fused through a linker region. This thesis describes the functional characterisation work carried out on GspDAH7PSWT, in attempt to help determine how DAH7PS enzymes evolved such diverse methods of regulation. Chapter 2 describes the functional characterisation work carried out on the catalytic and regulatory domains of GspDAH7PSWT. The enzyme demonstrated both DAH7PS and CM activities with the DAH7PS domain determined to be metal dependent and most activated by Cd2+. PA completely inhibited the catalytic activity of GspDAH7PSWT, and AUC demonstrated an equilibrium exists between the dimeric and tetrameric quaternary states of the enzyme in solution. Chapter 3 describes the domain truncation of GspDAH7PSWT carried out at the linker region in order to obtain two separate protein domains, the catalytic domain lacking the N-terminal domain (GspDAH7PSDAH7PS) and the regulatory domain without the catalytic domain (GspDAH7PSCM). Both variants were fully characterised, and information obtained from each domain was compared to the respective catalytic and regulatory domains of the wild-type enzyme, which was also characterised. Like GspDAH7PSWT, GspDAH7PSDAH7PS showed greatest activation in the presence of Cd2+, with other metals having varying effects on activation rates and stability of the enzyme. Both truncated variants followed Michaelis-Menten kinetics where GspDAH7PSDAH7PS was found to be more active than GspDAH7PSWT and unaffected by PA, whereas GspDAH7PSCM was a less efficient catalyst than the CM domain of GspDAH7PSWT. AUC demonstrated that in solution an equilibrium occurs between the monomeric and tetrameric oligomeric states of GspDAH7PSDAH7PS. Chapter 4 summarises the findings of the thesis along with future directions of this research, combining the results obtained and expanding upon them. It is concluded that the catalytic regulatory CM domain supports both protein structure and allosteric regulation of GspDAH7PSWT
6

Characterisation and Control of 3-Deoxy-D-arabino-heptulosonate 7-phosphate Synthase from Geobacillus sp

Othman, Mohamad January 2014 (has links)
3-Deoxy-D-arabino heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first step of the shikimate pathway, responsible for the biosynthesis of aromatic amino acids. This pathway is found in microorganisms, plants and apicomplexan parasites and its absence in mammals makes it a viable target for antimicrobial drug design. DAH7PS enzymes differ in the regulatory machinery that decorates the catalytic (β/α)8 barrel. Some DAH7PS enzymes are fused to chorismate mutase (CM), another enzyme in the shikimate pathway. This fusion protein is allosterically regulated by chorismate (CA) or prephenate (PA), the precursor of tyrosine and phenylalanine. It has been suggested that DAH7PS enzymes evolved these extensions to the core barrel for the sole purpose of regulation. Geobacillus sp DAH7PS (GspDAH7PSWT) is a thermophilic type Iβ DAH7PS enzyme with an N-terminal CM domain fused through a linker region. This thesis describes the functional characterisation work carried out on GspDAH7PSWT, in attempt to help determine how DAH7PS enzymes evolved such diverse methods of regulation. Chapter 2 describes the functional characterisation work carried out on the catalytic and regulatory domains of GspDAH7PSWT. The enzyme demonstrated both DAH7PS and CM activities with the DAH7PS domain determined to be metal dependent and most activated by Cd2+. PA completely inhibited the catalytic activity of GspDAH7PSWT, and AUC demonstrated an equilibrium exists between the dimeric and tetrameric quaternary states of the enzyme in solution. Chapter 3 describes the domain truncation of GspDAH7PSWT carried out at the linker region in order to obtain two separate protein domains, the catalytic domain lacking the N-terminal domain (GspDAH7PSDAH7PS) and the regulatory domain without the catalytic domain (GspDAH7PSCM). Both variants were fully characterised, and information obtained from each domain was compared to the respective catalytic and regulatory domains of the wild-type enzyme, which was also characterised. Like GspDAH7PSWT, GspDAH7PSDAH7PS showed greatest activation in the presence of Cd2+, with other metals having varying effects on activation rates and stability of the enzyme. Both truncated variants followed Michaelis-Menten kinetics where GspDAH7PSDAH7PS was found to be more active than GspDAH7PSWT and unaffected by PA, whereas GspDAH7PSCM was a less efficient catalyst than the CM domain of GspDAH7PSWT. AUC demonstrated that in solution an equilibrium occurs between the monomeric and tetrameric oligomeric states of GspDAH7PSDAH7PS. Chapter 4 summarises the findings of the thesis along with future directions of this research, combining the results obtained and expanding upon them. It is concluded that the catalytic regulatory CM domain supports both protein structure and allosteric regulation of GspDAH7PSWT

Page generated in 0.0407 seconds