• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relative influence of temperature and disturbance on vegetation dynamics in the Low Arctic : an investigation at multiple scales.

Lantz, Trevor Charles 11 1900 (has links)
Climate change will affect Arctic plant communities directly, by altering growth and recruitment, and indirectly, by increasing the frequency of natural disturbance. Since the structure of northern vegetation influences global climate, understanding both temperature and disturbance effects on vegetation is critical. Here, I investigate the influence of temperature and disturbance on Low Arctic vegetation at several spatio-temporal scales in the Mackenzie Delta Region, N.W.T. To disentangle the relative impact of temperature and disturbance on forest-tundra and tundra ecosystems, I sampled microenvironmental variability, plant community composition, and green alder abundance, growth, and reproduction on disturbed (burns and thaw slumps) and undisturbed sites across a regional temperature gradient. Disturbed areas showed increases in alder productivity, catkin production, and seed viability, as well as differences in plant community composition and microenvironment. The magnitude of plot-level responses to disturbance compared to variation across the temperature gradient suggests that in the short-term, increasing the frequency of disturbance may exert a stronger influence on tundra ecosystems than changes in temperature. At the plot level, increases in alder seed viability and recruitment at warmer sites point to the fine-scale mechanisms by which shrub abundance will change. To examine the relative influence of temperature and biophysical variables on landscape-level patterns of shrub dominance, I mapped Low Arctic vegetation using aerial photos. At this broader scale, correlations between temperature and the areal extent of shrub tundra suggest that warming will increase the dominance of shrub tundra. To assess the magnitude of changes in temperature and thaw slump activity, I analyzed climate records and mapped retrogressive thaw slumps using aerial photographs. An increase in thaw slump activity in recent decades, coincident with higher temperatures, suggests that continued warming will change the area affected by thermokarst disturbances like slumps. Taken together, my research indicates that the effects climate change will be magnified by shifts in the frequency of disturbance, initiating changes to Arctic vegetation with significant implications for global climate. My work also shows that to fully understand the influence of patch-landscape feedbacks on Arctic vegetation dynamics, the effects of disturbance must be examined across longer temporal and broader spatial scales.
2

Relative influence of temperature and disturbance on vegetation dynamics in the Low Arctic : an investigation at multiple scales.

Lantz, Trevor Charles 11 1900 (has links)
Climate change will affect Arctic plant communities directly, by altering growth and recruitment, and indirectly, by increasing the frequency of natural disturbance. Since the structure of northern vegetation influences global climate, understanding both temperature and disturbance effects on vegetation is critical. Here, I investigate the influence of temperature and disturbance on Low Arctic vegetation at several spatio-temporal scales in the Mackenzie Delta Region, N.W.T. To disentangle the relative impact of temperature and disturbance on forest-tundra and tundra ecosystems, I sampled microenvironmental variability, plant community composition, and green alder abundance, growth, and reproduction on disturbed (burns and thaw slumps) and undisturbed sites across a regional temperature gradient. Disturbed areas showed increases in alder productivity, catkin production, and seed viability, as well as differences in plant community composition and microenvironment. The magnitude of plot-level responses to disturbance compared to variation across the temperature gradient suggests that in the short-term, increasing the frequency of disturbance may exert a stronger influence on tundra ecosystems than changes in temperature. At the plot level, increases in alder seed viability and recruitment at warmer sites point to the fine-scale mechanisms by which shrub abundance will change. To examine the relative influence of temperature and biophysical variables on landscape-level patterns of shrub dominance, I mapped Low Arctic vegetation using aerial photos. At this broader scale, correlations between temperature and the areal extent of shrub tundra suggest that warming will increase the dominance of shrub tundra. To assess the magnitude of changes in temperature and thaw slump activity, I analyzed climate records and mapped retrogressive thaw slumps using aerial photographs. An increase in thaw slump activity in recent decades, coincident with higher temperatures, suggests that continued warming will change the area affected by thermokarst disturbances like slumps. Taken together, my research indicates that the effects climate change will be magnified by shifts in the frequency of disturbance, initiating changes to Arctic vegetation with significant implications for global climate. My work also shows that to fully understand the influence of patch-landscape feedbacks on Arctic vegetation dynamics, the effects of disturbance must be examined across longer temporal and broader spatial scales.
3

Relative influence of temperature and disturbance on vegetation dynamics in the Low Arctic : an investigation at multiple scales.

Lantz, Trevor Charles 11 1900 (has links)
Climate change will affect Arctic plant communities directly, by altering growth and recruitment, and indirectly, by increasing the frequency of natural disturbance. Since the structure of northern vegetation influences global climate, understanding both temperature and disturbance effects on vegetation is critical. Here, I investigate the influence of temperature and disturbance on Low Arctic vegetation at several spatio-temporal scales in the Mackenzie Delta Region, N.W.T. To disentangle the relative impact of temperature and disturbance on forest-tundra and tundra ecosystems, I sampled microenvironmental variability, plant community composition, and green alder abundance, growth, and reproduction on disturbed (burns and thaw slumps) and undisturbed sites across a regional temperature gradient. Disturbed areas showed increases in alder productivity, catkin production, and seed viability, as well as differences in plant community composition and microenvironment. The magnitude of plot-level responses to disturbance compared to variation across the temperature gradient suggests that in the short-term, increasing the frequency of disturbance may exert a stronger influence on tundra ecosystems than changes in temperature. At the plot level, increases in alder seed viability and recruitment at warmer sites point to the fine-scale mechanisms by which shrub abundance will change. To examine the relative influence of temperature and biophysical variables on landscape-level patterns of shrub dominance, I mapped Low Arctic vegetation using aerial photos. At this broader scale, correlations between temperature and the areal extent of shrub tundra suggest that warming will increase the dominance of shrub tundra. To assess the magnitude of changes in temperature and thaw slump activity, I analyzed climate records and mapped retrogressive thaw slumps using aerial photographs. An increase in thaw slump activity in recent decades, coincident with higher temperatures, suggests that continued warming will change the area affected by thermokarst disturbances like slumps. Taken together, my research indicates that the effects climate change will be magnified by shifts in the frequency of disturbance, initiating changes to Arctic vegetation with significant implications for global climate. My work also shows that to fully understand the influence of patch-landscape feedbacks on Arctic vegetation dynamics, the effects of disturbance must be examined across longer temporal and broader spatial scales. / Forestry, Faculty of / Graduate
4

Dendrochronological Potential of Salix Alaxensis from the Kuujjua River Area, Western Canadian Arctic

Zalatan, R., Gajewski, K. January 2006 (has links)
This study presents the first annually-resolved chronology using Salix alaxensis (Anderss.) Cov from Victoria Island, Northwest Territories, Canada, an area well north of treeline. Forty-one samples were collected and examined for subsequent analysis. However, crossdating was difficult because of locally absent or missing rings and the narrowness of the rings, and ultimately thirteen stems were crossdated and used to evaluate their dendroclimatological potential. The chronology spans 74 years (1927-2000) and could potentially be extended further using subfossil wood. Precipitation data from December of the previous year to March of the current year were the most consistently and highly correlated with ring width. This suggests that the recharge of the soil moisture by early summer snowmelt is a key factor limiting growth of these shrubs.
5

Analyzing pan-Arctic 1982–2006 trends in temperature and bioclimatological indicators (productivity, phenology and vegetation indices) using remote sensing, model and field data

Luus, Kristina 28 August 2009 (has links)
Warming induced changes in Arctic vegetation have to date been studied through observational and experimental field studies, leaving significant uncertainty about the representativeness of selected field sites as well as how these field scale findings scale up to the entire pan-Arctic. The purposes of this thesis were therefore to 1) analyze remotely-sensed/modeled temperature, Normalized Difference Vegeta- tion Indices (NDVI) and plant Net Primary Productivity (NPP) to assess coarse- scale changes (1982–2006) in vegetation; and 2) compare field, remote sensing and model outputs to estimate limitations, challenges and disagreements between data formats. The following data sources were used: • Advanced Very High Resolution Radiometer Polar Pathfinder Extended (APP- x, temperature & albedo) • Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Dif- ference Vegetation Index (NDVI) & Enhanced Vegetation Index (EVI) ) • Landsat Enhanced Thematic Mapper (Landsat ETM, NDVI) • Global Inventory Modeling and Mapping Studies (GIMMS, NDVI) • Global Productivity Efficiency Model (GloPEM, Net Primary Productivity (NPP)) Over the pan-Arctic (1982-2007), increases in temperature, total annual NPP and maximum annual NDVI were observed. Increases in NDVI and NPP were found to be closely related to increases in temperature according to non-parametric Sen’ slope and Mann Kendall tau tests. Variations in phenology were largely non- significant but related to increases in growing season temperature. Snow melt onset and spring onset correspond closely. MODIS, Landsat and GIMMS NDVI data sets agree well, and MODIS EVI and NDVI are very similar for spring and summer at Fosheim Peninsula. GloPEM NPP and field estimates of NPP are poorly correlated, whereas GIMMS NDVI and GloPEM NPP are well correlated, indicating a need for better calibration of model NPP to field data. In summary, increases in pan-Arctic biological productivity indicators were ob- served, and were found to be closely related to recent circumpolar warming. How- ever, these changes appear to be focused in regions from which recent field studies have found significant ecological changes (Alaska), and coarse resolution remote sensing estimates of ecological changes have been less marked in other regions. Dis- crepancies between results from model, field data and remote sensing, as well as central questions remaining about the impact of increases in productivity on soil- vegetation-atmosphere feedbacks, indicate a clear need for continued research into warming induced changes in pan-Arctic vegetation.
6

Analyzing pan-Arctic 1982–2006 trends in temperature and bioclimatological indicators (productivity, phenology and vegetation indices) using remote sensing, model and field data

Luus, Kristina 28 August 2009 (has links)
Warming induced changes in Arctic vegetation have to date been studied through observational and experimental field studies, leaving significant uncertainty about the representativeness of selected field sites as well as how these field scale findings scale up to the entire pan-Arctic. The purposes of this thesis were therefore to 1) analyze remotely-sensed/modeled temperature, Normalized Difference Vegeta- tion Indices (NDVI) and plant Net Primary Productivity (NPP) to assess coarse- scale changes (1982–2006) in vegetation; and 2) compare field, remote sensing and model outputs to estimate limitations, challenges and disagreements between data formats. The following data sources were used: • Advanced Very High Resolution Radiometer Polar Pathfinder Extended (APP- x, temperature & albedo) • Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Dif- ference Vegetation Index (NDVI) & Enhanced Vegetation Index (EVI) ) • Landsat Enhanced Thematic Mapper (Landsat ETM, NDVI) • Global Inventory Modeling and Mapping Studies (GIMMS, NDVI) • Global Productivity Efficiency Model (GloPEM, Net Primary Productivity (NPP)) Over the pan-Arctic (1982-2007), increases in temperature, total annual NPP and maximum annual NDVI were observed. Increases in NDVI and NPP were found to be closely related to increases in temperature according to non-parametric Sen’ slope and Mann Kendall tau tests. Variations in phenology were largely non- significant but related to increases in growing season temperature. Snow melt onset and spring onset correspond closely. MODIS, Landsat and GIMMS NDVI data sets agree well, and MODIS EVI and NDVI are very similar for spring and summer at Fosheim Peninsula. GloPEM NPP and field estimates of NPP are poorly correlated, whereas GIMMS NDVI and GloPEM NPP are well correlated, indicating a need for better calibration of model NPP to field data. In summary, increases in pan-Arctic biological productivity indicators were ob- served, and were found to be closely related to recent circumpolar warming. How- ever, these changes appear to be focused in regions from which recent field studies have found significant ecological changes (Alaska), and coarse resolution remote sensing estimates of ecological changes have been less marked in other regions. Dis- crepancies between results from model, field data and remote sensing, as well as central questions remaining about the impact of increases in productivity on soil- vegetation-atmosphere feedbacks, indicate a clear need for continued research into warming induced changes in pan-Arctic vegetation.
7

Vegetation responses to summer- and winter warming : flower power in the Alaskan tussock tundra?

Wressel, Maja January 2018 (has links)
Plants have an important role in the tundra carbon (C) cycle by storing C in primary production and thus potentially counteract the C released from thawing permafrost. Tundra vegetation is limited by nitrogen (N), which is predicted to increase with rising temperatures and increased snow depth. In permafrost systems, rooting depth will determine whether plants can access N in the deep soil which, with increasing snow depth, has the potential to turn into a significant N source. Increased plant-available N is thus expected to affect both plant productivity and vegetation composition. This study aims to investigate vegetation responses to increased temperature and snow depth in a permafrost system of moist tussock tundra by combining open-top chambers with a realistic snow manipulation (snowfences). The shallow-rooted shrubs, Betula nana and Rhododendron tomentosum, and the deep-rooted sedge Eriophorum vaginatum were analyzed for responses in growth and reproduction effort. Also, vegetation responses in terms of normalized difference vegetation index (NDVI) were investigated. Winter warming increased flower density of E. vaginatum while B. nana showed an increased shoot growth in response to winter warming, but only during mid-growing season. Although winter warming increased winter soil temperature and generated a trend of increased thaw depth, there were no responses in NDVI or further species-specific responses in reproduction effort, leaf and shoot growth, leaf production or leaf dry weight to warming treatments. These results indicate that E. vaginatum respond in reproduction effort while B. nana respond in (mid-season) growth to winter warming. In total, the warming treatments generated a weak response in tundra plants which indicate that tussock tundra might not be very responsive to short-term warming. These results suggest that tundra plants have a low ability to counteract increased releases of soil C in response to short-term warming.

Page generated in 0.099 seconds