• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La reconnaissance de la courbure membranaire par ArfGAP1

Mesmin, Bruno 17 December 2007 (has links) (PDF)
La formation d'un bourgeon vésiculaire repose sur une machinerie complexe qui déforme, par une action mécanique, une membrane plane en une membrane courbée. Le manteau COPI, responsable de ce phénomène dans le Golgi, se polymérise latéralement à la surface de la membrane, sous le contrôle de la petite protéine G Arf1 activée. Suite à la formation de la vésicule, Arf1 revient à l'état inactif par hydrolyse de son GTP et se dissocie de la membrane, provoquant alors le désassemblage du manteau. Cette réaction d'hydrolyse doit être finement régulée, pour ne pas intervenir trop tôt et compromettre l'assemblage du manteau. Notre laboratoire a révélé que l'activité de la protéine ArfGAP1, responsable de la désactivation d'Arf1, est hypersensible à la courbure membranaire. Ceci permettrait à ArfGAP1 de réguler de manière spatio-temporelle l'état du manteau COPI en couplant son désassemblage à la courbure membranaire qu'il a lui-même induite.<br />Au cours de ma thèse, j'ai montré que la dépendance d'ArfGAP1 à la courbure s'explique par la présence dans cette protéine de deux motifs « ALPS », qui se replient en hélices alpha lors de leur adsorption membranaire. Ce sont des hélices amphipathiques atypiques car, si elles possèdent une face hydrophobe classique, elles ont une face polaire riche en sérine et thréonine et pauvre en résidus chargés. Puisque ces résidus hydroxylés ne peuvent interagir avec les têtes polaires des lipides, la liaison d'un motif ALPS ne repose que sur l'insertion de ses résidus hydrophobes entre les lipides, ce qui est favorisé par l'écartement lipidique induit par la courbure membranaire, mais plus difficile sur membrane plane où les lipides sont plus compactés.
2

Hélices amphipathiques et transport vésiculaire

Morello, Vincent 12 October 2009 (has links) (PDF)
Les membranes cellulaires sont constamment remodelées par le bourgeonnement et la fusion de vésicules assurant le transport entre les différentes organelles. De nombreuses protéines périmembranaires orchestrent ce trafic vésiculaire. Les hélices amphipathiques jouent un rôle important dans le mécanisme d'interaction de certaines de ces protéines avec les membranes. A la différence de domaines protéiques reconnaissant spécifiquement un lipide, les hélices amphipathiques reconnaissent plus globalement la physicochimie d'une membrane (forme, charge...). GMAP-210 est une très longue protéine golgienne qui agit comme corde moléculaire grâce à sa structure en coiled-coil. Le laboratoire avait montré que l'extrémité N-terminale de GMAP-210 possède un motif ALPS, une hélice amphipathique singulière sensible à la courbure membranaire. Les motifs ALPS sont caractérisés par l'absence de résidus basiques, l‘interaction avec les membranes ne repose donc que sur l'hydrophobicité. Pour compenser ce déficit, la liaison des motifs ALPS n'a lieu qu'au contact de membranes fortement courbées. Dans le cas de GMAP-210, le motif ALPS permettrait de capturer des vésicules de transport. J'ai démontré que l'autre extrémité de la corde interagit avec Arf1GTP sur des membranes. Cette interaction est conditionnée par le contact avec la surface membranaire d'une petite hélice amphipathique située en aval du domaine d'interaction avec Arf1. De façon remarquable, l'interaction entre Arf1GTP et le domaine C-terminal de GMAP-210 est régulée indirectement par la courbure membranaire. En effet, ArfGAP1, identifiée comme la première protéine possédant un motif ALPS, est capable de dissocier rapidement le complexe de membranes courbées. Par conséquent, GMAP-210 connecte des membranes courbées, par exemple des vésicules, à des membranes planes recouvertes d'Arf1, par exemple des citernes golgiennes. Le mécanisme vectoriel d'attachement de membranes par GMAP-210 repose donc sur de nombreuses hélices amphipathiques (deux dans GMAP-210, une dans Arf1 et une dans ArfGAP1) et permettrait d'expliquer le confinement des vésicules de transport autour de l'appareil de Golgi. Des mesures de vitesse spontanée de désorption membranaire des extrémités de GMAP-210 suggèrent que l'attachement des membranes est très dynamique et a lieu sur des échelles de temps de la seconde à la minute. Le motif ALPS n'est pas le seul motif amphipathique sensible à la courbure. L'alpha-synucléine, une protéine synaptique célèbre pour son implication dans la maladie de Parkinson, contient également une hélice amphipathique senseur de courbure. Curieusement, la physicochimie du motif ALPS et de l'alpha-synucléine est opposée tant pour la face polaire que pour la face hydrophobe. L'alpha-synucléine a une périodicité atypique (3/11), une face polaire zwittérionique et une face hydrophobe présentant de petits résidus et des thréonines. En utilisant des liposomes de composition et de rayon définis, j'ai montré que la charge négative des membranes est un paramètre discriminant dans la liaison aux membranes des deux protéines. En effet, à la différence de GMAP-210, l'alpha-synucléine est strictement dépendante d'un taux élevé de phospholipides anioniques. Par contre, ces protéines sont toutes les deux très sensibles à la nature des chaînes insaturées des phospholipides. Les premiers résultats montrent néanmoins des subtilités intéressantes : l'alpha-synucléine semble mieux adaptée que GMAP-210 à une membrane polyinsaturée comme l'est celle des vésicules synaptiques. En conclusion, de nombreuses hélices amphipathiques sont impliquées dans le trafic vésiculaire. Elles présentent de nettes différences dans leur physicochimie suggérant une adaptation à des membranes cellulaires (de composition lipidique et de rayon définis) par des mécanismes qui restent largement à explorer.
3

Nouvelles perspectives pour comprendre la reconnaissance des défauts d'empaquetage lipidique par le senseur de courbure membranaire ALPS (Amphipathic Lipid Packing Sensor)

Gonzalez-Rubio Garrido, Paula 27 November 2009 (has links) (PDF)
Des motifs structuraux largement impliqués dans les processus de modulation de la courbure membranaire sont les hélices amphipathiques. Parmi eux, un senseur de la courbure exhibant des propriétés particulières a été identifiée récemment : ALPS (ArfGAP1 Amphipathic lipid packing sensor). Il a été montré que son interaction avec la membrane était indépendante des charges Žlectrostatiques En effet, le modèle actuel suggère que les résidus hydrophobes soient les responsables de l'ancrage d'ALPS ˆ la membrane en reconaissant les défauts d'empaquetage lipidique. Par simulations par dynamique moléculaire des différentes membranes lipidiques avec le motif ALPS, nous montrons que ce senseur exhibe une considérable liberté conformationnelle et structurelle qui l'habilitent ˆ explorer les défauts d'empaquetage aux niveaux des têtes polaires ainsi qu'au niveau des chaînes aliphatiques. Nous proposons des nouvelles perspectives au niveau atomique de la reconnaissance des défauts d'empaquetage lipidique par ALPS o la déformabilité et flexibilité structurale ainsi que les propriétés dynamiques et physiques de la membrane jouent un r™le prépondérant.
4

Rôle des Arfs et de leurs régulateurs dans la migration des cellules de bordure chez la drosophile

Zeledon Orellana, José Carlos 03 1900 (has links)
La migration cellulaire joue un rôle essentiel dans le développement des organismes multicellulaires et dans certaines pathologies comme le cancer, où elle permet la formation de métastases. Le trafic vésiculaire est un régulateur clé de la migration cellulaire, notamment en contrôlant la localisation de protéines impliquées dans la migration telles que les intégrines, les cadhérines et les récepteurs transmembranaires. En particulier, notre laboratoire a montré que l'endocytose contrôle l'orientation et la communication cellulaire durant la migration cellulaire collective. Notre hypothèse est que d'autres événements du trafic vésiculaire pourraient aussi être impliqués dans ce type de migration. Ainsi, le but de cette thèse a été de déterminer la fonction des petites GTPases Arf, importantes pour la formation de vésicules et le tri de cargo dans ces vésicules et de leurs régulateurs dans la migration cellulaire collective. Un modèle pour étudier la migration cellulaire collective est les chambres d’œufs de Drosophila melanogaster. En effet, lors de l’ovogénèse, des cellules folliculaires appelées cellules de bordure migrent à travers les cellules nourricières pour atteindre l’ovocyte. Conformément à notre hypothèse, un fort défaut de migration est observé lorsque les Arfs sont déplétées spécifiquement dans les cellules de bordure. De plus, un constat similaire est observé après la déplétion de certains régulateurs des Arfs (ArfGAPs et ArfGEFs). Notamment, nous avons démontré que l’ArfGAP Drongo et sa fonction d'activation de l’activité GTPase sont essentielles pour le détachement initial des cellules de bordure du tissu folliculaire. Drongo promeut le détachement en contrôlant la localisation de la myosine phosphatase afin de réguler l’activité de la myosine II à l’arrière des cellules. De plus, nous avons montré que Drongo agit sur l’Arf de classe III (Arf51F) de manière antagoniste à l’ArfGEF Steppke pour déplacer la myosine phosphatase de l’arrière du groupe de cellules. D’un autre côté, nous avons aussi démontré qu’une autre GAP, ArfGAP1, contrôle la directionnalité de migration. Cette ArfGAP agit potentiellement en régulant la localisation de certains déterminants de la migration tels que l’E-cadhérine et les récepteurs tyrosine kinase. Ainsi, nos recherches ont démontré un rôle essentiel des Arfs ainsi que des rôles spécifiques de deux ArfGAPs dans la migration cellulaire collective. / Cell migration is implicated in various important biological processes, notably it is central for the dissemination of cancer cells. Vesicular trafficking is a key regulator of cell migration, notably by controlling the localisation of proteins involved in migration such as integrins, cadherins and transmembrane receptors. In particular, our laboratory has shown that endocytosis controls orientation and cellular communication during collective cell migration. Our hypothesis is that other events of vesicular trafficking might be implicated in collective cell migration. Thus, the purpose of this thesis was to assess the function of small GTPases Arf, important for vesicle formation and cargo sorting into those vesicles, and their regulators in collective cell migration. A powerful model to study collective cell migration is the migration of follicular cells named border cells during oogenesis in Drosophila melanogaster. Border cells (BCs) detach from the follicle epithelium surrounding the egg chambers and form a small cluster of six to ten cells that migrates invasively between the giant nurse cells that compose the center of the egg chamber, toward the oocyte. Accordingly to our hypothesis, a strong migration defect is observed when the Arfs are depleted specifically in the border cells. Moreover, a similar finding is observed after depletion of some Arfs regulators (ArfGAPs and ArfGEFs). In particular, the ArfGAP Drongo and its GTPase-activating function are essential for the initial detachment of the border cell cluster from the basal lamina. We demonstrated through protein localization and genetic interactions that Drongo controls the localisation of the myosin phosphatase in order to regulate myosin II activity at the back of the cluster and promote border cells detachment. Moreover, we showed that Drongo acts on the class III Arf (Arf51F) antagonistically to the guanine exchange factor Steppke to displace myosin phosphatase from the back of the cluster. On the other hand, we have also demonstrated that the GAP ArfGAP1 controls the directionality of migration. This ArfGAP potentially acts by regulating the localization of certain determinants of migration such as E-cadherin and receptors tyrosine kinase. Thus, our research has demonstrated an essential role for Arfs in collective cell migration and specific contributions of two ArfGAPs in this migration process.

Page generated in 0.0201 seconds