Spelling suggestions: "subject:"syngap"" "subject:"syngas""
1 |
Synaptic vesicle recycling in preclinical models of intellectual disability, autism spectrum disorder and epilepsyBonnycastle, Katherine January 2018 (has links)
The development of the central nervous system is dysregulated in neurodevelopmental disorders such as intellectual disability, autism spectrum disorder, and epilepsy. These three disorders have different clinical features, yet there is high comorbidity between them. They can be difficult to study due to their highly complex aetiologies, however there are various monogenic diseases that can cause all of them, including SYNGAP1 haploinsufficiency where the synaptic guanosine triphosphatase (GTPase)-activating protein (SYNGAP) protein levels are highly reduced; Fragile X syndrome where the fragile X mental retardation protein (FMRP) is no longer translated; and DNM1 epileptic encephalopathy where mutations in the Dynamin1 gene alter the protein function. These monogenic conditions are synaptopathies as the proteins affected play important roles in synapse stability and neurotransmission. Because of the high comorbidity between these disorders, it is hypothesised that there may be a common mechanism underlying them. We hypothesise that a deficit in presynaptic vesicle recycling may be part of a common mechanism underlying intellectual disability, autism spectrum disorder, and epilepsy especially in SYNGAP1 haploinsufficiency, Fragile X syndrome, and DNM1 epileptic encephalopathy. Using various fluorescent presynaptic activity reporters including synaptic pHluorins, tetramethylrhodamine dextran and calcium dyes to compare presynaptic activity in in vitro models of these monogenic conditions, we found differences in synaptic vesicle (SV) endocytosis in the genetically altered conditions compared to wildtype controls. We observed various SV endocytosis defects in clathrin-mediated endocytosis (CME) or activity-dependent bulk endocytosis (ADBE) in our models. We observed enhanced CME in SynGAP1 KO mouse hippocampal neurons. This enhanced SV endocytosis was accompanied by decreased SV cargo on the plasma membrane. Rat SynGAP1 KO hippocampal neurons did not display enhanced SV endocytosis, nor did neurons with the GTPase-activating (GAP) domain of SynGAP deleted. This was perhaps due to the altered time course of development between these rodent species. In mouse and rat models of Fragile X syndrome, CME was not altered compared to wildtype controls. However, in a rat model, we observed fewer nerve terminals undergoing ADBE which is the dominant SV endocytosis mode during elevated neuronal activity. De novo epileptic encephalopathy-associated mutations in DNM1 had differential effects on SV recycling through both CME and ADBE. Mouse hippocampal neurons overexpressing Dyn1R237W, Dyn1I289F and Dyn1H396D all showed less CME compared to overexpression of Dyn1WT. Moreover, fewer nerve terminals overexpressing Dyn1H396D were found to undergo ADBE. We also found that a large-conductance potassium (BK) channel opener can accelerate clathrin-mediated endocytosis and thus may be able to rescue the impaired SV endocytosis caused by these mutants. Although there is not yet a common underlying pathway at the presynaptic level between these conditions, SV recycling dysfunction is present across all of these models. Furthermore, we propose an axis of pathophysiology model where optimal SV endocytosis is required for optimised neural performance. We propose that either decreased or increased SV endocytosis can lead to the synaptic dysfunction observed in these models.
|
2 |
Characteristics of cellular and synaptic function in rodent forebrain neurons with altered SynGAP expressionMizen, Lindsay Anne MacTaggart January 2018 (has links)
Intellectual disability (ID) and autism spectrum disorders (ASDs) can have a devastating impact on an individual’s functioning and quality of life. Insights from pre-clinical models of monogenic forms of ID and ASD are now revealing the biochemical pathways and aberrations in cellular and synaptic functioning involved. One monogenic cause of ID, ASD and epilepsy is SYNGAP1 ID which results from mutations in the SYNGAP1 gene on human chromosome 6. Although a variety of symptoms have been reported, many affected individuals have moderate to severe intellectual impairment and severe seizure phenotypes. Previous pre-clinical studies have mainly focussed on the effects of altered SynGAP expression in mice. This thesis is therefore the first to explore altered SynGAP expression in a rat model. It also adds to the body of research exploring the roles of SynGAP isoforms in glutamatergic synaptic function. The SynGAP_GAP deletion rat was engineered to have a deletion encompassing the enzymatically active GTPase activating protein (GAP) domain of the protein, via which SynGAP regulates multiple biochemical pathways by enhancing the slow intrinsic hydrolysis of GTP by GTP-binding proteins. SyngapGAP/GAP rats appeared small and failed to thrive. As with Syngap-/- mice, this complete loss of WT SynGAP proved lethal, whereas Syngap+/GAP rats appeared to develop normally. The electrophysiological data obtained from this new model reveals a reduction in the frequency of miniature excitatory post-synaptic currents (mEPSCs) in Syngap+/GAP cultured neurons. However the exaggerated hippocampal long-term depression identified in Syngap+/- mice was not seen in the rats. There was also no evidence of differences in intrinsic cell properties, excitatory and inhibitory currents or ratios of AMPAR / GABAAR and AMPAR / NMDAR between WT and heterozygous rats. In addition to the characterisation of the SynGAP_GAP deletion rat, the impact of the previously unstudied Eα1 isoform on forebrain neuronal synaptic function was examined through mEPSC recordings. A trend towards lower mEPSC frequency was found which supports previous research showing that α1 isoforms reduce synaptic strength. This body of work therefore adds to published evidence of isoform specific functions and provides the first evidence of the impact of SynGAP alterations in rats, the results of which show some intriguing differences from previous work in mice.
|
3 |
L’haploinsuffisance de Syngap1 dans les neurones GABAergiques induit une hyperactivation de mTOR et des déficits cognitifs.Badra, Théo 04 1900 (has links)
No description available.
|
4 |
Electrophysiological and Behavioral Testing Reveal Aberrant Visual Processing in Syngap1+/- MiceCharles Andrew Martin (12456591) 25 April 2022 (has links)
<p> </p>
<p><em>Syngap1+/-</em> is a mouse mode for intellectual disability and autism spectrum disorder where haploinsufficiency of the <em>Syngap1</em> gene and therefore downregulation of SynGAP1 leads to early maturation of synapses within the brain within post-natal days fourteen and sixteen instead of at the normal developmental schedule of post-natal day thirty. This early-shifted timeline falls directly before the visual critical where binocular matching between inputs from the two eyes occurs, and during a period where neurons become selective to specific orientations. High-level visual and cognitive issues observed in autism spectrum disorder patients might follow from deficits in basic sensory processing development, but it is not yet understand how <em>Syngap1</em> haploinsufficiency affects visual development and visual processing. Therefore, to characterize visual processing within the <em>Syngap1+/-</em> mouse model of autism spectrum disorder, acute electrophysiological recordings were performed within the monocular and binocular regions of the mouse visual cortex (V1). Responses to a series of visual stimuli were analyzed to measure and compare receptive field size, orientation selectivity, and binocularity between <em>Syngap1+/-</em> mice and littermate controls. In order to understand how potential deficits in physiology could translate into visual perception, a behavioral training protocol was implemented which isolated visual acuity in mice. In accordance with known developmental timelines in the visual cortex, it was found that the receptive field sizes of V1 neurons in <em>Syngap1+/-</em> mice were unchanged from wild type controls. However, these same neurons had wider tuning curves and lower firing rates than neurons in littermate controls. Ocular dominance was unaltered between <em>Syngap1+/-</em> and wild type mice, but this was possibly due to low sample sizes of neurons from the binocular regions of V1. At the behavioral level, lower visual acuities were discovered in <em>Syngap1+/-</em> mice with a size degree difference compared to littermate controls – a minor but significant difference. These results indicate a reduction in SynGAP1 expression has a perceivable effect on V1 development and function at both physiological and behavioral levels.</p>
|
5 |
Bases moléculaires et cellulaires d’un trouble neurodéveloppemental causé par l’haploinsuffisance de SYNGAP1Berryer, Martin, H 12 1900 (has links)
No description available.
|
6 |
Compréhension intégrée de quatre syndromes génétiques impliqués dans la déficience intellectuelle via des biomarqueurs électrophysiologiques, les manifestations comportementales, le fonctionnement adaptatif et les interventions disponibles sur le plan clinique.Côté, Valérie 05 1900 (has links)
La trisomie 21 (T21), le Syndrome X Fragile (SXF), la Sclérose tubéreuse de Bourneville (STB) et les mutations SYNGAP1 sont causés par des dysfonctionnements des voies moléculaires qui entraînent notamment un déséquilibre dans l’excitation et l’inhibition de l’activité neuronale qui aurait des impacts sur le développement et le fonctionnement du cerveau. Toutefois, il est difficile de faire le pont entre les déséquilibres moléculaires observés dans les modèles animaux et les particularités structurelles, fonctionnelles et cognitives observées dans ces syndromes chez l’humain. À notre connaissance, peu d’études ont comparé différents syndromes génétiques sur les processus sensoriels, l’apprentissage de base ou encore leurs caractéristiques comportementales en utilisant des paradigmes similaires et translationnels, permettant de mieux comprendre leurs particularités.
Le premier volet de cette thèse vise à identifier si l’activité électroencéphalographique serait un biomarqueur adéquat représentant les altérations neurobiologiques tant des processus sensoriels que d’apprentissage chez les humains présentant ces syndromes. L’étude #1 avait comme objectif de décrire le traitement sensoriel auditif, comme il s’agit d’un processus élémentaire, et ce, chez les mutations SYNGAP1 qui représentent une condition génétique encore peu étudiée chez l’humain. Les résultats ont d’ailleurs permis d’identifier une diminution de la synchronisation de phase et une augmentation de la puissance dans la bande gamma qui distinguent cette condition génétique tant des participants sans DI que de la T21. Toujours dans l’esprit d’identifier des biomarqueurs électroencéphalographiques, mais cette fois au niveau d’un processus cognitif de base, l’étude #2 avait pour objectif de comparer tous ces syndromes dans un paradigme de suppression neuronale (SN) afin de vérifier la présence de SN et de comparer l’apprentissage de base chez ces populations. Les résultats ont identifiés que la T21 et le SXF présentaient tous les deux un patron de SN et que le SXF présentait relativement une plus forte habituation indiquant des particularités spécifiques selon les syndromes.
Le deuxième volet, davantage clinique, permet de comparer les profils comportementaux associés au fonctionnement adaptatif entre les syndromes et à décrire les pistes d’intervention existantes. L’étude #3 a notamment mis en évidence que le QI et les symptômes de TDAH sont associés au fonctionnement adaptatif auprès de ces différents syndromes dont le SXF et la STB. Cet article a aussi permis de décrire les profils comportementaux de ces mêmes conditions en révélant davantage de difficultés rapportées chez les individus présentant un SXF, alors que la T21 présentait moins de particularités cliniques au niveau comportemental. Enfin, l’article #4 a mis en lumière diverses interventions utilisées auprès de la population présentant une DI notamment des stratégies cognitivo-comportementales et compensatoires.
Cette thèse permet donc de dresser un portrait spécifique de ces syndromes génétiques concernant leur signature électrophysiologique lors du traitement sensoriel et de l’apprentissage ainsi que sur le plan des comorbidités comportementales et de leur relation avec le fonctionnement adaptatif, pour ensuite aborder les interventions actuelles en DI. Les diverses particularités identifiées à plusieurs niveaux ont permis de générer des suggestions pouvant guider certaines interventions futures. / Down syndrome (DS), Fragile X syndrome (FXS), Tuberous sclerosis complex (TSC) and SYNGAP1 mutations are caused by dysfunctions of the molecular pathways which lead among others to an imbalance in excitation and inhibition of the neuronal activity that would impact the brain development and its functioning. However, it is difficult to directly bridge the gap between the molecular imbalances observed in animal models with the structural, functional and cognitive characteristics observed in human with these syndromes. To our knowledge, few studies have compared those different genetic syndromes on sensory processing, basic learning or on their behavioural issues using similar and translational paradigms then allowing a better understanding of their specificities.
The first part of this thesis aims to identify whether electroencephalographic activity would be an adequate biomarker representing neurobiological alterations both in sensory processing and learning in humans with these syndromes. The goal of study #1 was to describe auditory sensory processing, as a very first basic process, in SYNGAP1 mutations being a genetic condition still little studied in humans. Results showed a decrease in phase synchronization and an increase in the power of gamma band which distinguish this genetic condition both from participants without ID and from DS. Still in order to identify electroencephalographic biomarkers, but this time at a basic cognitive level, study #2 aimed to compare all these syndromes in a repetition suppression (RS) paradigm in order to observe the presence of RS and compare basic learning in these populations. The results identified a RS pattern in both DS and FXS. FXS also exhibited relatively higher habituation then indicating specific features according to the syndrome.
The second part, addressing clinical aspects, permits to compare the behavioural profiles associated with adaptive functioning between syndromes and to describe existing interventions on ID population. Study #3 notably highlighted that IQ and ADHD symptoms are associated with adaptive functioning especially in FXS and TSC. This article also made it possible to describe the behavioural profiles of these syndromes, revealing more difficulties reported in individuals with FXS, while DS presented fewer behavioural issues. Finally, article #4 highlighted various interventions used with ID population, notably cognitive-behavioural and compensatory strategies.
This thesis therefore makes it possible to gain a better understanding of these genetic syndromes concerning their electrophysiological signature during sensory processing and learning as well as in terms of behavioural comorbidities and their relationship with adaptive functioning, to then address current ID interventions. These different syndromic particularities identified at several levels made it possible to generate suggestions that could guide future interventions in this field.
|
7 |
Implication de Syngap1 dans la transmission GABAergique et la plasticité synaptiqueXing, Paul 08 1900 (has links)
La déficience intellectuelle affecte de 1 à 3% de la population mondiale, ce qui en fait le trouble cognitif le plus commun de l’enfance. Notre groupe à découvert que des mutations dans le gène SYNGAP1 sont une cause fréquente de déficience intellectuelle non-syndromique, qui compte pour 1-3% de l’ensemble des cas. À titre d’exemple, le syndrome du X fragile, qui est la cause monogénique la plus fréquente de déficience intellectuelle, compte pour environ 2% des cas. Plusieurs patients affectés au niveau de SYNGAP1 présentent également des symptômes de l’autisme et d’une forme d’épilepsie. Notre groupe a également montré que SYNGAP1 cause la déficience intellectuelle par un mécanisme d’haploinsuffisance. SYNGAP1 code pour une protéine exprimée exclusivement dans le cerveau qui interagit avec la sous-unité GluN2B des récepteurs glutamatergique de type NMDA (NMDAR). SYNGAP1 possède une activité activatrice de Ras-GTPase qui régule négativement Ras au niveau des synapses excitatrices.
Les souris hétérozygotes pour Syngap1 (souris Syngap1+/-) présentent des anomalies de comportement et des déficits cognitifs, ce qui en fait un bon modèle d’étude. Plusieurs études rapportent que l’haploinsuffisance de Syngap1 affecte le développement cérébral en perturbant l’activité et la plasticité des neurones excitateurs. Le déséquilibre excitation/inhibition est une théorie émergente de l’origine de la déficience intellectuelle et de l’autisme. Cependant, plusieurs groupes y compris le nôtre ont rapporté que Syngap1 est également exprimé dans au moins une sous-population d’interneurones GABAergiques. Notre hypothèse était donc que l’haploinsuffisance de Syngap1 dans les interneurones contribuerait en partie aux déficits cognitifs et au déséquilibre d’excitation/inhibition observés chez les souris Syngap1+/-.
Pour tester cette hypothèse, nous avons généré un modèle de souris transgéniques dont l’expression de Syngap1 a été diminuée uniquement dans les interneurones dérivés des éminences ganglionnaires médianes qui expriment le facteur de transcription Nkx2.1 (souris Tg(Nkx2,1-Cre);Syngap1). Nous avons observé une diminution des courants postsynaptiques inhibiteurs miniatures (mIPSCs) au niveau des cellules pyramidales des couches 2/3 du cortex somatosensoriel primaire (S1) et dans le CA1 de l’hippocampe des souris Tg(Nkx2,1-Cre);Syngap1. Ces résultats supportent donc l’hypothèse selon laquelle la perte de Syngap1 dans les interneurones contribue au déséquilibre d’excitation/inhibition. De manière intéressante, nous avons également observé que les courants postsynaptiques excitateurs miniatures (mEPSCs) étaient augmentés dans le cortex S1, mais diminués dans le CA1 de l’hippocampe.
Par la suite, nous avons testé si les mécanismes de plasticité synaptique qui sous-tendraient l’apprentissage étaient affectés par l’haploinsuffisance de Syngap1 dans les interneurones. Nous avons pu montrer que la potentialisation à long terme (LTP) NMDAR-dépendante était diminuée chez les souris Tg(Nkx2,1-Cre);Syngap1, sans que la dépression à long terme (LTD) NMDAR-dépendante soit affectée. Nous avons également montré que l’application d’un bloqueur des récepteurs GABAA renversait en partie le déficit de LTP rapporté chez les souris Syngap1+/-, suggérant qu’un déficit de désinhibition serait présent chez ces souris.
L’ensemble de ces résultats supporte un rôle de Syngap1 dans les interneurones qui contribue aux déficits observés chez les souris affectées par l’haploinsuffisance de Syngap1. / Intellectual disability affects 1-3% of the world population, which make it the most common cognitive disorder of childhood. Our group discovered that mutation in the SYNGAP1 gene was a frequent cause of non-syndromic intellectual disability, accounting for 1-3% of the cases. For example, the fragile X syndrome, which is the most common monogenic cause of intellectual disability, accounts for 2% of all cases. Some patients affected by SYNGAP1 also showed autism spectrum disorder and epileptic seizures. Our group also showed that mutations in SYNGAP1 caused intellectual disability by an haploinsufficiency mechanism. SYNGAP1 codes for a protein expressed only in the brain which interacts with the GluN2B subunit of NMDA glutamatergic receptors (NMDAR). SYNGAP1 possesses a Ras-GAP activating activity which negatively regulates Ras at excitatory synapses.
Heterozygote mice for Syngap1 (Syngap1+/- mice) show behaviour abnormalities and learning deficits, which makes them a good model of intellectual disability. Some studies showed that Syngap1 affects the brain development by perturbing the activity and plasticity of excitatory neurons. The excitatory/inhibitory imbalance is an emerging theory of the origin of intellectual disability and autism. However, some groups including ours, showed that Syngap1 is expressed in at least a subpopulation of GABAergic interneurons. Therefore, our hypothesis was that Syngap1 happloinsufficiency in interneurons contributes in part to the cognitive deficits and excitation/inhibition imbalance observed in Syngap1+/- mice.
To test this hypothesis, we generated a transgenic mouse model where Syngap1 expression was decreased only in GABAergic interneurons derived from the medial ganglionic eminence, which expresses the transcription factor Nkx2.1 (Tg(Nkx2,1-Cre);Syngap1 mouse). We showed that miniature inhibitory postsynaptic currents (mIPSCs) were decreased in pyramidal cells in layers 2/3 in primary somatosensory cortex (S1) and in CA1 region of the hippocampus of Tg(Nkx2,1-Cre);Syngap1 mice. Those results suggest that Syngap1 haploinsufficiency in GABAergic interneurons contributes in part to the excitation/inhibition imbalance observed in Syngap1+/- mice. Interestingly, we also observed that miniature excitatory postsynaptic currents (mEPSCs) were increased in cortex S1 but decreased in CA1 region of the hippocampus.
We further tested whether synaptic plasticity mechanisms that are thought to underlie learning and memory were affected by Syngap1 haploinsufficiency in GABAergic interneurons. We showed that NMDAR-dependent long-term potentiation (LTP) but not NMDAR-dependent long-term depression (LTD) was decreased in Tg(Nkx2,1-Cre);Syngap1 mice. We also showed that GABAA receptor blockade rescued in part the LTP deficit in Syngap1+/- mice, suggesting that a disinhibition deficit is present in these mice.
Altogether, the results support a functional role of Syngap1 in GABAergic interneurons, which may in turn contributes to the deficit observed in Syngap1+/- mice.
|
8 |
Role of Syngap1 in GABAergic Circuit Development and FunctionJadhav, Vidya 04 1900 (has links)
Le gène SYNGAP1 code pour la protéine Synaptic Ras GTPase-Activating protein 1 et est essentiel pour le développement normal de la fonction synaptique et de la cognition. Les mutations dans le gène SYNGAP1 qui provoquent la perte d'une seule copie du gène (haplo-insuffisance) sont associées à un handicap intellectuel, comorbide avec un trouble du spectre autistique et l'épilepsie. Les individus présentant des mutations SYNGAP1 montrent un large éventail de caractéristiques phénotypiques telles que l'encéphalopathie épileptique, des déficits moteurs, des déficits sensoriels et d'autres anomalies comportementales et cognitives. De manière intéressante, les modèles de souris transgéniques Syngap1 haplo-insuffisantes reproduisent les déficits comportementaux et cognitifs observés chez les individus SYNGAP1. Plusieurs études se sont concentrées sur le rôle de Syngap1 dans les synapses glutamatergiques, révélant qu'il est un régulateur négatif de Ras, impliqué dans le trafic des récepteurs AMPA au niveau de la membrane postsynaptique des neurones excitateurs. Syngap1 est fortement impliqué dans la maturation des épines dendritiques et dans la régulation de la plasticité synaptique et de l'homéostasie neuronale.
Toutefois, le rôle de Syngap1 dans les neurones GABAergiques est moins bien exploré. Les interneurones GABAergiques forment une population hétérogène, les sous-types dominants étant les interneurones exprimant la Parvalbumine (PV) et la Somatostatine (SST) dérivés de l'éminence ganglionnaire médiane (MGE). Des études récentes ont révélé le rôle multifacette de Syngap1 dans les interneurones GABAergiques, notamment son implication dans la migration des interneurones, le branchement axonal des cellules PV et la régulation des synapses inhibitrices sur les somas postsynaptiques. Cependant, si et comment Syngap1 affecte les types cellulaires spécifiques d’interneurones dérivés de MGE tels que les interneurones PV et/ou SST n’est pas connu, et cela est exploré dans ma thèse. De plus, nous avons exploré si et comment l'haplo-insuffisance de Syngap1 induite pré- ou post-natalement spécifiquement dans les sous-types d'interneurones PV et SST contribue aux modalités comportementales, cognitives et sensorielles chez les souris adultes. Des stratégies génétiques ont été utilisées pour induire l'haplo-insuffisance de Syngap1, 1. pré-natalement dans les cellules PV et SST en utilisant la lignée de souris Nkx2.1_Cre, 2. pré-natalement dans les cellules SST en utilisant la ligne de souris SST_Cre et 3. post-natalement dans les cellules PV en utilisant la lignée de souris PV_Cre. Nous avons constaté que la réduction de Syngap1 pré-natalement dans les cellules PV et SST (en utilisant le promoteur Nkx2.1 pour cibler les interneurones dérivés de MGE) influence le traitement sensoriel auditif, en augmentant notamment les oscillations gamma de base, en affectant l'entraînement auditif et en échouant à s'habituer aux sons répétitifs. De plus, ces souris présentent des déficits de comportement social et une flexibilité cognitive altérée dans le comportement d'extinction de la peur. De telles altérations du traitement sensoriel, ainsi que des déficits comportementaux et cognitifs, n'ont pas été observés observés lorsque Syngap1 a été supprimé dans les cellules SST prénatales (en utilisant le promoteur SST). La suppression postnatale de Syngap1 dans les cellules PV montre quant à elle une habituation auditive accrue. Cependant, ces souris transgéniques ne présentent aucun déficit de comportement social ou d'extinction de la peur. Ces résultats suggèrent que les cellules PV pré- et/ou péri-natales sont particulièrement vulnérables à l'haplo-insuffisance de Syngap1 pendant une fenêtre temporelle sensible précoce lors du développement cérébral chez la souris.
Alors que des modèles de souris conditionnelles spécifiques aident à comprendre la fonction biologique fondamentale de Syngap1, ils n'englobent pas la complexité du trouble génétique causé par SYNGAP1-ID. Nous avons donc étendu notre étude pour comprendre si les cellules PV sont altérées dans un modèle murin d'haplo-insuffisance germinale de Syngap1. En raison de leur innervation unique du soma et des dendrites proximales de leurs cibles postsynaptiques, les cellules PV influencent fortement l'activité du réseau et sont impliquées dans des fonctions cognitives supérieures telles que l'attention sélective, la mémoire de travail et la flexibilité cognitive, en particulier dans le cortex préfrontal (PFC). Nous avons étudié la connectivité synaptique des cellules PV et avons constaté qu'elles reçoivent des entrées excitatrices réduites dans les cortex préfrontal et auditif adultes. En parallèle, nous avons montré une connectivité réduite des cellules PV sur les cellules excitatrices avec moins de recrutement dans le PFC des souris adultes. Les souris transgéniques germinales présentent également des déficits de flexibilité cognitive (comme dans le comportement d'extinction de la peur) et dans l'apprentissage de la peur contextuelle. Ces résultats suggèrent un déséquilibre global entre l'excitation et l'inhibition dû à des altérations dans la connectivité des cellules PV.
Nos études explorent donc le rôle de Syngap1 dans des lignées transgéniques haplo-insuffisantes conditionnelles et germinales en se concentrant sur des types cellulaires GABAergiques distincts (cellules PV et/ou SST), et montrent que les déficits des cellules PV, pendant une fenêtre de développement précoce, sont un facteur prédominant contribuant à la physiopathologie sous-jacente des mutations de Syngap1. Une meilleure compréhension du rôle de Syngap1 dans différents types cellulaires et stades de développement aidera à concevoir des stratégies d'intervention thérapeutique optimales. / SYNGAP1 gene encodes for the Synaptic Ras GTPase-Activating protein 1, and is critical for the normal development of synaptic function and cognition. Mutations in SYNGAP1 gene that cause loss of single copy of the gene (haploinsufficiency) are associated with intellectual disability, comorbid with autism spectrum disorder and epilepsy. Individuals with SYNGAP1 mutations show a broad spectrum of phenotypic features such as epileptic encephalopathy, motor deficits, sensory deficits and other behavioral and cognitive abnormalities. Interestingly, transgenic Syngap1 haploinsufficient mouse models phenocopy the behavioral and cognitive deficits as in SYNGAP1 individuals. Several studies have focused on the role of Syngap1 in glutamatergic synapses and revealed it to be a negative regulator of Ras, involved in the trafficking of AMPA receptors at the postsynaptic membrane of excitatory neurons. Syngap1 is strongly implicated in dendritic spine maturation and in regulating synaptic plasticity and neuronal homeostasis.
The role of Syngap1 in GABAergic neurons however is less well explored. GABAergic interneurons form a heterogenous population, the dominant subtypes being the Parvalbumin (PV) and Somatostatin (SST) expressing interneurons derived from Medial Ganglionic Eminence (MGE). Recent studies have divulged the multi-faceted role of Syngap1 in GABAergic interneurons such as its involvement with interneuron migration, PV cell axonal branching, and regulation of inhibitory synapses onto postsynaptic somata. However, whether and how Syngap1 affects specific MGE-derived interneuron cell types such as PV and/or SST interneurons is unknown and explored in my thesis. Further, we explored whether and how Syngap1 haploinsufficiency induced either pre- or postnatally specifically in PV and SST interneuron subtypes, contributes to behavioral, cognitive and sensory related modalities in adult mice. Genetic strategies were used to induce Syngap1 haploinsufficiency, 1. prenatally in PV and SST cells using the Nkx2.1_Cre driver line, 2. prenatally in SST cells using SST_Cre driver line and 3. postnatally in PV cells using the PV_Cre driver line. We found that reduction of Syngap1 prenatally in both PV and SST cells (using the Nkx2.1 promoter to target MGE-derived interneurons) influences auditory sensory processing, in particular increasing the baseline gamma oscillations, affecting auditory entrainment and failing to habituate to repetitive sounds. In addition, these mice show deficits in social behavior and impaired cognitive flexibility in fear extinction behavior. Such sensory processing alterations, as well as behavioral and cognitive deficits were not observed when Syngap1 was deleted in prenatal SST cells (using the SST promoter). Postnatal deletion of Syngap1 in PV cells in turn showed increased auditory habituation, however these transgenic mice show no deficits in either social or fear extinction behavior. These results suggest that pre- and/or perinatal PV cells are particularly vulnerable to Syngap1 haploinsufficiency at an early sensitive time window during mouse brain development.
While specific conditional mouse models help in understanding the fundamental biological function of the Syngap1, they do not encompass the complexity of the genetic disorder caused in SYNGAP1-ID. We therefore extended our study to understand whether PV cells are altered in a mouse model of germline Syngap1 haploinsufficiency. Due to their unique innervation of the soma and proximal dendrites of their postsynaptic targets, PV cells strongly influence network activity and are involved in higher cognitive functions such as selective attention, working memory and cognitive flexibility particularly in the prefrontal cortex (PFC). We investigated PV cell synaptic connectivity and found that they receive reduced excitatory inputs in the adult prefrontal and auditory cortex. In parallel, we showed reduced PV connectivity onto excitatory cells with less recruitment in the PFC of adult mice. The germline transgenic mice also showed deficits in cognitive flexibility (such as in fear extinction behavior) and cued contextual fear conditioning. These results suggest an overall E/I imbalance due to alterations in PV cell connectivity.
Our studies therefore explore the role of Syngap1 in both conditional and germline haploinsufficient transgenic lines focusing on distinct GABAergic cell types (PV and/or SST cells), and shows that PV cell deficits, during an early developmental window, is a predominant contributing factor to the pathophysiology underlying Syngap1 mutations. A better understanding of the role of Syngap1 in different cell types and developmental stages will help in designing optimal therapeutic intervention strategies.
|
Page generated in 1.2437 seconds