• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 367
  • 250
  • 168
  • 19
  • 8
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 894
  • 429
  • 327
  • 266
  • 264
  • 261
  • 253
  • 242
  • 213
  • 75
  • 73
  • 65
  • 64
  • 63
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

The Productive Capacity of Semiarid Soils and the Present Emergency

McGeorge, W. T. 03 1900 (has links)
No description available.
142

Estimating Surface Water Presence and Infiltration for Intermittent Streams in the Semi-arid Southwest

Nicholas, Hillary Dianne January 2012 (has links)
Ephemeral streams with spatially and temporally variable flow are important ecological settings in semi-arid desert environments that until now have been poorly characterized. Our quantitative analysis explores how intermittent stream hydrology varies across geomorphic (mountain streams to desert washes) and climatic gradients (150-400 mm precipitation) in Southern Arizona. Stream channels were instrumented for the first time with a co-deployment of vertical profiles of subsurface temperature sensors, and electrical resistance (ER) sensors on the bed surface. HYDRUS 1-D was used to simulate vertical unsaturated flow, and differences along hydrologic, topographic, and climatic gradients were compared. Annual surface water presence varied < 1%-82% of the year, and reach-normalized infiltration water volumes were 20,000-2,500,000 m³/(km y). Surface water presence was correlated with geomorphic gradient, and infiltration volumes were correlated with surface water presence. This sensor co-deployment method has shown that ER sensors alone are necessary to estimate infiltration in semi-arid, poorly-sorted, coarse desert channels.
143

Advances in Dendrochronology, 1943

Douglass, A. E. 01 1900 (has links)
No description available.
144

Tree-Rings and Climate in Morocco

Berger, A. L., Guiot, J., Mathieu, L., Munaut, A. V. January 1979 (has links)
Two sites located near Ketama in the Morocco Rif have been selected, on the basis of limiting climatic factors, in order to study the relationship between tree rings and climate. After the trend associated with biological factors related to increasing age has been removed and all variables have been standardized, some statistical parameters have been computed and a variance analysis has been performed. After the persistence has been eliminated, an original technique of multiple regression on the principal components and of selection of the most significant variables has been built. Twenty -four climatic variables have been used. The principal aim of this paper is to describe this original statistical technique of data analysis and to illustrate its power with dendroclimatological data in Morocco. For the temperate site located in low altitude (1280 m), among the most important variables, we have retained total monthly precipitation for August, mean temperature of January, April, and May of the current year and mean temperature of October of the previous year. For the cold site (2100 m), total monthly precipitation for September and temperatures of January and May of the current year and precipitation for October of the previous year definitely influence the growth rate of cedars.
145

Salinity Problems in Arid Lands Irrigation: A Literature Review and Selected Bibliography

Casey, Hugh E. January 1972 (has links)
No description available.
146

Piospheres in semi-arid rangeland : consequences of spatially constrained plant-herbivore interactions

Derry, Julian F. January 2004 (has links)
This thesis explains two aspects of animal spatial foraging behaviour arising as a direct consequence of animals' need to drink water: the concentration of animal impacts, and the response of animals to those impacts. In semi-arid rangelands, the foraging range of free-ranging large mammalian herbivores is constrained by the distribution of drinking water during the dry season. Animal impacts become concentrated around these watering sites according to the geometrical relationship between the available foraging area and the distance from water, and the spatial distribution of animal impacts becomes organised along a utilisation gradient termed a "piosphere". During the dry season the temporal distribution of the impacts is determined by the day-to-day foraging behaviour of the animals. The specific conditions under which these spatial foraging processes determine the piosphere pattern have been identified in this thesis. At the core of this investigation are questions about the response of animals to the heterogeneity of their resources. Aspects of spatial foraging are widely commented on whilst explaining the consequences of piosphere phenomena for individual animal intake, population dynamics, feeding strategies and management. Implicated are our notions of optimal foraging, scale in animal response, and resource matching. This thesis addressed each of these. In the specific context of piospheres, the role of energy balance in optimal foraging was also tested. Field experiments for this thesis showed a relationship between goat browsing activity and measures of spatial impact. As a preliminary step to investigating animal response to resource heterogeneity, the spatial pattern of foraging behaviour/impacts was described using spatial statistics. Browsing activity varied daily revealing animal assessment of the spatial heterogeneity of their resources and an energetic basis for foraging decisions. This foraging behaviour was shown to be determined by individual plants rather than at larger scales of plant aggregation. A further experiment investigated the claim that defoliation has limited impact on browser intake rate, suggesting that piospheres may have few consequences for browser intake. This experiment identified a constraining influence of browse characteristics at the small scale on goat foraging by relating animal intake rate to plant bite size and distribution. Computer simulation experiments for this thesis supported these empirical findings by showing that the distribution of spatial impacts was sensitive to the marginal value of forage resources, and identified plant bite size and distribution as the causal factors in limiting animal intake rate in the presence of a piosphere. As a further description of spatial pattern, piospheres were characterised by applying a contemporary ecological theory that ranks resource patches into a spatial hierarchy. Ecosystem dynamics emerge from the interactions between these patches, with piospheres being an emergent property of a natural plant-herbivore system under specific conditions of constrained foraging. The generation of a piosphere was shown to be a function of intake constraints and available foraging area, whilst piosphere extent was shown to be independent of daily energy balance including expenditure on travel costs. A threshold distance for animal foraging range arising from a hypothesised conflict between daily energy intake and expenditure was shown not to exist, whereas evidence for an intermediate distance from water as a focus for accumulated foraging activity was identified. Individual animal foraging efficiency in the computer model was shown to be sensitive to the piosphere, while animal population dynamics were found to be determined in the longer term by dry season key resources near watering points. Time lags were found to operate in the maintenance of the gradient, and the density dependent moderation of the animal population. The latter was a direct result of the inability of animal populations to match the distribution of their resources with the distribution of their foraging behaviour, because of their daily drinking requirements. The result is that animal forage intake was compromised by the low density of dry season forage in the vicinity of a water point. This thesis also proposes that piospheres exert selection pressures on traits to maximise energy gain from the spatial heterogeneity of dry season resources, and that these have played a role in the evolution of large mammalian herbivores.
147

Vegetation change and water, sediment and carbon dynamics in semi-arid environments

Puttock, Alan Keith January 2013 (has links)
This study develops understanding of vegetation change and water, sediment and carbon dynamics in semi-arid environments. Objectives were addressed using an integrated ecohydrological and biogeochemical approach. Fieldwork, over two contrasting grass-woody transitions at the Sevilleta National Wildlife Refuge, New Mexico, USA; quantified vegetation structure, soil structure and the spatial distribution of soil carbon resources. Over both transitions; woody sites showed a lower percentage vegetation cover and a greater heterogeneity in vegetation pattern, soil properties and soil carbon. Soil organic carbon differed in both quantity and source across the sites; with levels higher under vegetation, particularly at the woody sites. Biogeochemical analysis revealed soil organic carbon to be predominantly sourced from grass at the grassland sites. In contrast, at the woody sites soil organic carbon under vegetation patches was predominantly sourced from woody vegetation, whilst inter-patch areas exhibited a strong grass signature. Investigation of function focussed on the hydrological response to intense rainfall events. Rainfall-runoff monitoring showed woody sites to exhibit greater; runoff coefficients, event discharge, eroded sediment and event carbon yields. In contrast to grass sites, biogeochemical analysis showed the loss of organic carbon from woody sites to exhibit a mixed source signal, reflecting the loss of carbon originating from both patch and interpatch areas. To examine the linkages between vegetation structure and hydrological function, a flow length metric was developed to quantify hydrological connectivity; with woody sites shown to have longer mean flow pathways. Furthermore, in addition to rainfall event characteristics, flow pathway lengths were shown to be a significant variable for explaining the variance within fluxes of water, sediment and carbon. Results demonstrating increased event fluxes of sediment and carbon from woody sites have important implications for the quality of semi-arid landscapes and other degrading ecosystems globally. It is thus necessary to translate the understanding of carbon dynamics developed within this study to the landscape scale, so changing fluvial carbon fluxes can be incorporated into carbon budgets, research frameworks and land management strategies at policy-relevant scales.
148

Dehydration in man in a semi-arid climate

Rambo, Reginald Rodney, 1909-, Rambo, Reginald Rodney, 1909- January 1934 (has links)
No description available.
149

Analyzing Landscape Trends on Agriculture, Introduced Exotic Grasslands and Riparian Ecosystems in Arid Regions of Mexico

Mendez-Estrella, Romeo, Romo-Leon, Jose, Castellanos, Alejandro, Gandarilla-Aizpuro, Fabiola, Hartfield, Kyle 18 August 2016 (has links)
Riparian Zones are considered biodiversity and ecosystem services hotspots. In arid environments, these ecosystems represent key habitats, since water availability makes them unique in terms of fauna, flora and ecological processes. Simple yet powerful remote sensing techniques were used to assess how spatial and temporal land cover dynamics, and water depth reflect distribution of key land cover types in riparian areas. Our study area includes the San Miguel and Zanjon rivers in Northwest Mexico. We used a supervised classification and regression tree (CART) algorithm to produce thematic classifications (with accuracies higher than 78%) for 1993, 2002 and 2011 using Landsat TM scenes. Our results suggest a decline in agriculture (32.5% area decrease) and cultivated grasslands (21.1% area decrease) from 1993 to 2011 in the study area. We found constant fluctuation between adjacent land cover classes and riparian habitat. We also found that water depth restricts Riparian Vegetation distribution but not agricultural lands or induced grasslands. Using remote sensing combined with spatial analysis, we were able to reach a better understanding of how riparian habitats are being modified in arid environments and how they have changed through time.
150

Variability of vegetation in the Touws river and catchment using remote sensing

Dlikilili, Sinethemba January 2019 (has links)
Magister Artium - MA / Changes in climate patterns have raised concerns for environmentalists globally and across southern Africa. The changes greatly affect the growth dynamics of vegetation to such an extent that climate elements such as rainfall have become the most important determinant of vegetation growth. In arid and semi-arid environments, vegetation relies on near-surface groundwater as the main source of water. Changes in the environment due to climate can be examined by using remotely sensed data. This approach offers an affordable and easy means of monitoring the impact of climate variability on vegetation growth. This study examined the response of vegetation to rainfall and temperature, and assessed the dependence thereof on groundwater in a climatically variable region of the semi-arid Karoo. The methodology used included sampling plant species in the riparian and non-riparian areas over two plant communities in seven vegetation plots. The Normalised Difference Vegetation Index (NDVI) derived from the Landsat OLI and TM was used to measure vegetation productivity. This was compared with rainfall totals derived from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) and the mean monthly temperature totals. A drought index, (Standardised Precipitation Index – SPI) was an additional analysis to investigate rainfall variability. Object-based Image Analysis (OBIA) and Maximum Likelihood supervised classification approaches together with indicators of groundwater discharge areas (Topographic Wetness Index – TWI, and profile curvature) were used to map vegetation and surface water that depend on groundwater.

Page generated in 0.0308 seconds