Spelling suggestions: "subject:"prima)""
181 |
Previsão de cargas elétricas através de um modelo híbrido de regressão com redes neuraisSilva, Thays Aparecida de Abreu [UNESP] 24 February 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:32Z (GMT). No. of bitstreams: 0
Previous issue date: 2012-02-24Bitstream added on 2014-06-13T18:49:32Z : No. of bitstreams: 1
silva_taa_me_ilha.pdf: 370447 bytes, checksum: b861e5232da4742a12b7ae39aa142840 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Atualmente os sistemas elétricos de potência crescem em tamanho e complexidade e se faz necessário criar alternativas para minimizar o custo total de geração e operação. A previsão de cargas é uma tarefa importante para o planejamento e operação dos sistemas elétricos, pois dela dependem outras tarefas como despacho econômico, fluxo de potência, análise de estabilidade, entre outras. Para tanto esta tarefa deve ser precisa para que o sistema opere de forma segura e confiável. A precisão da previsão é de grande importância já que é através dela que é estabelecida quando e quanto de capacidade de geração e transmissão deve-se dispor para atender a carga prevista sem interrupções no fornecimento. O objetivo deste trabalho é desenvolver um modelo híbrido utilizando os modelos ARIMA de Box & Jenkins e Redes Neurais Artificiais com treinamento realizado pelo algoritmo de Levenberg-Marquartd. Este modelo será utilizado com a finalidade de melhorar a precisão dos resultados com relação à previsão de cargas elétricas a curto prazo. Os resultados obtidos através da metodologia proposta, modelo híbrido de regressão com redes neurais artificiais, foram comparados com demais trabalhos da literatura. É importante destacar que os resultados utilizados na comparação usam o mesmo banco de dados históricos (demanda de carga elétrica) de uma companhia do setor elétrico brasileiro, bem como o mesmo período de janelamento / Nowadays the electric power systems are increasing and becoming complexes and therefore it is necessary to provide alternatives to minimize the generation and operation costs. Load forecasting is a very important task for planning and operation of electric power systems of which other tasks are dependent, as for example, economic dispatch, power flow, and stability analysis, among others. Therefore, this task (load forecasting) must be precise for a secure and reliable operation of the power system. Forecasting precision is very important to set when and how much generation and transmission capacity is necessary to attend the load without interruptions. The objective of this work is to develop a hybrid model using ARIMA of Box & Jenkins and Neural Networks trained by Levenberg-Marquardt algorithm. This model is used aiming to improve the precision of the short term electrical load forecasting. The results obtained were compared with others available on the literature. It is emphasized that the data used is the same (from a Brazilian electric company) as well as the window period
|
182 |
Previs?o sazonal da precipita??o para o Nordeste do Brasil: um contraste entre as metodologias de Box-Jenkins e Box-Tiao / Sazonal forecast for precipitation for Northeast Brazil: a contrast between Box-Jenkins and Box-Tiao methodologiesSouza, Thiago Rodrigues de 21 February 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-06-02T22:45:04Z
No. of bitstreams: 1
ThiagoRodriguesDeSouza_DISSERT.pdf: 4007098 bytes, checksum: b98a621f29e991b3bc26a68f0060557f (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-06-09T20:35:17Z (GMT) No. of bitstreams: 1
ThiagoRodriguesDeSouza_DISSERT.pdf: 4007098 bytes, checksum: b98a621f29e991b3bc26a68f0060557f (MD5) / Made available in DSpace on 2017-06-09T20:35:17Z (GMT). No. of bitstreams: 1
ThiagoRodriguesDeSouza_DISSERT.pdf: 4007098 bytes, checksum: b98a621f29e991b3bc26a68f0060557f (MD5)
Previous issue date: 2017-02-21 / O objetivo deste trabalho ? realizar um estudo comparativo com ajustes de
modelos de previs?es pelo m?todo de Box-Jenkins (ARIMA) e Box-Tiao
(ARIMAX) para precipita??o acumulada mensal em seis cidades do Nordeste
do Brasil, sendo escolhida de acordo com a classifica??o clim?tica de K?ppen.
Tendo como vari?veis ex?genas: temperaturas da superf?cie do mar do oceano
Atl?ntico e Pac?fico. Em todas as s?ries de precipita??o acumulada verificou-se
a presen?a do componente sazonal, al?m disso, devido ao pressuposto de
vari?ncia constante e normalidade dos dados n?o serem atendida, foi aplicado
na s?rie original ? transforma??o Box Cox. Atrav?s das medidas de qualidade
dos ajustes dos modelos pelo m?todo ARIMA e ARIMAX, temos que o modelo
ARIMAX evidenciou como o melhor ajuste aos dados em estudo, apresentando
menores valores para os crit?rios de informa??o AIC, erro m?dio e erro
quadr?tico m?dio. / The objective this work is realize a comparative study with adjustment of
previsions models by Box-Jenkins (ARIMA) and Box-Tiao (ARIMAX) methods
for monthly accumulated precipitation in six cities of Brazilian northeast,
choosing the cities according with K?ppen climatic classification. We've
exogenes variables: sea surface temperature of Atlantic and Pacific Ocean.In
all precipitations accumulated series were observerd the presence of sazonal
component, besides that, due to assumption of the constante variance and data
normality isn't reached, was applied in original serie the Box Cox
transformation.By the measures of quality of the models adjustments by ARIMA
and ARIMAX method, we've the ARIMAX model evidencied like the better
adjustment to data, showing lower values to AIC information criteria, mean error
and mean square error.
|
183 |
Comparação de modelos MLP/RNA e modelos Box-Jenkins em séries temporais não linearesFlores, João Henrique Ferreira January 2009 (has links)
A capacidade de prever resultados futuros, ao se analisar uma série de dados, é uma importante ferramenta para o planejamento de qualquer empresa ou indústria. Porém, a literatura oferece muitas opções de ferramentas e modelos estatísticos que permitem obter estas previsões. Cada qual com suas características e recomendações. Dentre estes modelos, destacam-se os modelos de Box e Jenkins, e os modelos de Redes Neurais Artificiais (RNA) - com destaque aos modelos de perceptron de múltiplas camadas (MLP). Estas duas diferentes abordagens são comparadas nesta dissertação com relação a sua capacidade de obter previsões acuradas em séries de dados não lineares quanto a sua média. As abordagens foram comparadas utilizando-se a série mensal do índice de produção física industrial do Estado do Rio Grande do Sul. Bem como a série anual de manchas solares, sendo a segunda utilizada como caso-controle para as comparações, devido ao fato de que as suas propriedades já foram amplamente estudadas. No estudo da série do índice de produção física mensal, os modelos de Box e Jenkins obtiveram melhor rendimento. Na série das manchas solares foram os modelos MLP que se destacaram. Desta forma, não é possível afirmar se alguma das abordagens é superior - tratando-se de séries de dados não lineares quanto a sua média. / The capacity to preview future outcomes on the time series analysis is an important tool for any business and industry planning. However, the literature offers many options on statistical tools and models which allow to obtain these forecasts. Each one with their features and recommendations. 1n these models, the Box and Jenkins and Artificial Neural Networks (ANN) models, with the multilayer perceptron (MLP) highlighted, stand out. These two different approaches are compared in this thesis related to the capacity to obtain accurate forecasts in mean related non-linear time series analysis. These approaches were compared using the monthly physical production index of Rio Grande do Sul time series and the sunspot series, being the second one used as a case-control to the comparisons, due the fact of its properties are already widely studied. 1n the monthly physical production index series study, t,he Box and Jenkins models obtained better efficiency. 1n the sunspot series, the MLP models were highlighted. So, it isn't possible to affirm if any of the approaches is superior, in the case of mean related non-linear time series.
|
184 |
Extensão de técnicas clássicas para análise de séries temporais do tipo intervaloLuis Santiago Maia, André 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T15:52:00Z (GMT). No. of bitstreams: 2
arquivo3072_1.pdf: 2151220 bytes, checksum: b28a86f3cf1758147db2ac214690331d (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2010 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Os dados simbólicos apresentam, em sua estrutura, formas interessantes para se transformar grandes bases de dados clássicos em novos conjuntos de dados de tamanho reduzido, facilitando a manipulação e proporcionando novas técnicas de análise dos mesmos. No entanto, mesmo com os recentes avanços promovidos por pesquisadores nesta área, o volume de técnicas de manipulação e, consequentemente, de análise de dados simbólicos (ADS) ainda é incipiente.
Uma série temporal do tipo intervalo (STI), no campo de dados simbólicos, pode ser definida como um conjunto de intervalos observados sequencialmente no tempo, em que cada intervalo é descrito por um vetor bidimensional com elementos em IR representados pelo limite superior e pelo limite inferior. O desenvolvimento de técnicas para previsão de STI é uma área de pesquisa muito promissora e os poucos resultados relatados na literatura surgiram muito recentemente.
Nesta tese, estendemos técnicas clássicas de análise de séries temporais para descrição, modelagem e previsão de STI no domínio de ADS. Neste contexto, nós apresentamos técnicas para descrição de uma STI, envolvendo cálculo de estatísticas sumárias e representação gráfica dos dados.
Na modelagem, apresentamos métodos que consistem na explicação do processo gerador da STI a partir de certo modelo, bem como métodos de estimação de parâmetros e métodos para avaliação da qualidade do modelo, em termos do ajuste
|
185 |
Výstavba lineárnych stochastických modelov časových radov triedy SARIMA – automatizovaný postup / Construction of Linear Stochastic Models of SARIMA Class Time Lines – Automatized MethodTrcka, Peter January 2015 (has links)
This work concerns the creation of automatized procedure of ARIMA and SARIMA class model choice according to Box-Jenkins methodology and in this connection, also deals with force testing of unit roots and analysis of applying of informatics criteria when choosing a model. The goal of this work is to create an application in the environment R that can automatically choose a model of time array generating process. The procedure is verified by a simulation study. In this work an effect of values of generating ARMA (1,1) model processes parameters is examined, for his choice and power of KPSS test, augmented Dickey-Fuller and Phillips-Peron test of unit roots.
|
186 |
Analýza spotřeby domácností v EU / Analysis of household consumption in the EUKolman, Martin January 2014 (has links)
The goal of this work is to analyze the evolution of household consumption of the states in the EU. The consumption will be researched in the view of classification COICOP, which is the classification of individual consumption by purpose. After mapping of this evolution the estimation of future values will be done from known time series. This estimation will be performed by two different ways. First one will respect the composition of household consumption in sections of classification COICOP. The second one will only work with time series of average consumption for all sections together. To compare the states cluster analysis will be done. This analysis will be done by two ways again. First one will be aimed to analyze the current situation and the second one will be aimed to analyze the evolution of household consumption. Instead of Microsoft Excel STATGRAPHICS X64 CENTURION and SPSS will be used in this thesis. Household consumption prognosis is the main benefit of this thesis. This prognosis is made for all sections of COICOP. Analysis has shown, that the consumption should rise in future. There are few exceptions, mainly countries with not good economic situation as Greece.
|
187 |
Analýza a předpověď ekonomických časových řad pomocí vybraných statistických metod / Analyze and economic time series forecasting by using selected statistical methodsSkopal, Martin January 2019 (has links)
V této diplomové práci se zaměřujeme na vytvoření plně automatizovaného algoritmu pro předpovědi finančních řad, který se snaží využít kombinační proceduru na dvou úrovních mezi dvěma rodinami předpovědních modelů, Box-Jenkins a Exponenciální stavové modely, které jsou schopny modelovat jak homoskedastické tak heteroskedastické časové řady. Pro tento účel jsme navrhli selekční proceduru v prostředí MATLAB pro modely ARIMA. Výsledný kombinovaný model je pak aplikován několik finančních časových řad a jeho výkonost je diskutována.
|
188 |
Previsão de cargas elétricas através de um modelo híbrido de regressão com redes neurais /Silva, Thays Aparecida de Abreu. January 2012 (has links)
Orientador: Anna Diva Plasencia Lotufo / Coorientador: Mara Lúcia Martins Lopes / Banca: Francisco Villarreal Alvarado / Banca: Luciana Cambraia Leite / Resumo: Atualmente os sistemas elétricos de potência crescem em tamanho e complexidade e se faz necessário criar alternativas para minimizar o custo total de geração e operação. A previsão de cargas é uma tarefa importante para o planejamento e operação dos sistemas elétricos, pois dela dependem outras tarefas como despacho econômico, fluxo de potência, análise de estabilidade, entre outras. Para tanto esta tarefa deve ser precisa para que o sistema opere de forma segura e confiável. A precisão da previsão é de grande importância já que é através dela que é estabelecida quando e quanto de capacidade de geração e transmissão deve-se dispor para atender a carga prevista sem interrupções no fornecimento. O objetivo deste trabalho é desenvolver um modelo híbrido utilizando os modelos ARIMA de Box & Jenkins e Redes Neurais Artificiais com treinamento realizado pelo algoritmo de Levenberg-Marquartd. Este modelo será utilizado com a finalidade de melhorar a precisão dos resultados com relação à previsão de cargas elétricas a curto prazo. Os resultados obtidos através da metodologia proposta, modelo híbrido de regressão com redes neurais artificiais, foram comparados com demais trabalhos da literatura. É importante destacar que os resultados utilizados na comparação usam o mesmo banco de dados históricos (demanda de carga elétrica) de uma companhia do setor elétrico brasileiro, bem como o mesmo período de janelamento / Abstract: Nowadays the electric power systems are increasing and becoming complexes and therefore it is necessary to provide alternatives to minimize the generation and operation costs. Load forecasting is a very important task for planning and operation of electric power systems of which other tasks are dependent, as for example, economic dispatch, power flow, and stability analysis, among others. Therefore, this task (load forecasting) must be precise for a secure and reliable operation of the power system. Forecasting precision is very important to set when and how much generation and transmission capacity is necessary to attend the load without interruptions. The objective of this work is to develop a hybrid model using ARIMA of Box & Jenkins and Neural Networks trained by Levenberg-Marquardt algorithm. This model is used aiming to improve the precision of the short term electrical load forecasting. The results obtained were compared with others available on the literature. It is emphasized that the data used is the same (from a Brazilian electric company) as well as the window period / Mestre
|
189 |
A Comparative Study of the KPSS and ADF Tests in terms of Size and PowerSjösten, Lina January 2022 (has links)
This thesis investigates through simulation why tests of unit root and stationarity occasionally result in different conclusions. The thesis focusses on the KPSS test and the ADF test and both review cases with and without a trend. The goal is to bring additional knowledge of whether one of the tests are more reliable in terms of size and power and when contradictory results occur. The result shows that both KPSS and ADF suffer from low power and size distortion and that the problems persists for the most common time series lengths. Problems particularly arise when the time series contains a trend or is a process with both an autoregressive and a moving average part. There is no clear evidence that one of the tests are superior to the other, it rather depends on sample size, parameter value and type of ARIMA process.
|
190 |
Time-Series Analysis of Pulp PricesÅkerlund, Agnes January 2020 (has links)
The pulp and paper industry has a significant role in Europe’s economy and society, and its significance is still growing. The pulp market and the customers’ requirements are highly affected by the pulp market prices and the requested kind of pulp, i.e., Elementary Chlorine Free (ECF) or Total Chlorine Free (TCF). There is a need to predict different market aspects, where the market price is one, to gain a better understanding of a business situation. Understanding market dynamics can support organizations to optimize their processes and production. Forecasting future pulp prices has not recently been done, but it would help businesses to make decisions that are more informed about where to sell their product. The studies existing about the pulp industry and forecast of market prices were completed over 20 years ago, and the market has changed since then in terms of, e.g., demand and production volume. There is a research gap within the pulp industry from a market price perspective. The pulp market is similar to, e.g., the energy industry in some aspects, and time-series analysis has been used to forecast electricity prices to support decision making by electricity producers and retailers. Autoregressive Integrated Moving Average (ARIMA) is one time-series analysis method that is used when data are collected with a constant frequency and when the average is not constant. Holt-Winters model is a well-known and simple time-series analysis. In this thesis, time-series analysis is used to predict the weekly market price for pulp the three upcoming months, with the research question “With what accuracy can time-series analysis be used to forecast the European PIX price on pulp on a week-ahead basis?”. The research method in this thesis is a case study where data are collected through the data collection method documents. First, articles are studied to gain understanding within the problem area leading to the use of the artefact time-series analyses and a case study. Then, historical data are collected from the organization FOEX Fastmarkets, where a new market price of pulp has been released every Tuesday since September 1996. The dataset has a total of 1200 data points. After data cleaning, it is merged to 1196 data points that are used for the analysis. To evaluate the results from the time-series analysis models ARIMA and Holt-Winter, Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used. The software RStudio is used for programming. The results shows that the ARIMA model provides the most accurate results. The mean value for MAE is 16,59 for ARIMA and 44,61 for Holt-Winters. The mean value for MAPE is 1,99% for ARIMA and 5,37% for Holt-Winters.
|
Page generated in 0.035 seconds