• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oroclines of the Iberian Variscan belt: Tectonic and paleogeographic implications

Shaw, Jessica 24 August 2015 (has links)
The Western European Variscan orogenic belt is thought to represent the final in a series of Paleozoic continental collisions that culminated with the amalgamation of the supercontinent Pangea. The Iberian segment of the Variscan belt is characterized by Cantabrian orocline, which is 180º and convex toward the west. Several lines of evidence are at odds with classical interpretation of the Cantabrian orocline as the core of the much larger ‘Ibero-Armorican’ arc, suggesting instead that it is structurally continuous with a second more southerly and complimentary orocline. Paleocurrent data collected from the Lower Ordovician Armorican Quartzite of the deformed Iberian Paleozoic passive margin sequence confirm the existence of the so-called Central Iberian orocline. Structural continuity between the Cantabrian and Central Iberian oroclines suggests that they formed contemporaneously and in the same fashion. Mesoscale vertical-axis folds deforming slaty cleavage and shear fabric within the Ediacaran Narcea Slates have a dominant vergence toward the hinge of the Cantabrian orocline, suggesting that its formation was in part accommodated by a mechanism of flexural shear during buckling of a linear belt in response to an orogen parallel principle compressive stress. The Cantabrian-Central Iberian coupled oroclines therefore palinspastically restore to an originally linear belt 2300 km in length. Provenance analysis of detrital zircons sampled from the Armorican Quartzite along a 1500-km-long segment of the palinplastically restored Iberian passive margin indicate that it originated in a paleogeographic position stretching east-west along the northern limits of north African Gondwana, from the Arabian-Nubian Shield to the Saharan hinterland. Paleomagnetic data and the distribution of Variscan ophiolites support a model of mid-Paleozoic separation of the Variscan autochthon (Armorican continental ribbon) from north Gondwana preceding or in conjunction with a 90º rotation required to reorient the ribbon to a Late Carboniferous north-south trend. Formation of the Iberian coupled oroclines accommodated 1100 km of orogen parallel shortening. The Western European Variscan belt, North American Cordillera, and Eastern European Alpine system are orogens similarly characterized by both coupled oroclines and paleomagnetic inclinations that are significantly shallower than cratonic reference values. Palinspastic restoration of the Alaskan and Carpathian–Balkan coupled oroclines fully resolves inclination anomalies within the Cordillera and Eastern Alpine system, respectively. Inclination anomalies within the Iberian Variscan belt are only partially resolved through palinspastic restoration of the Iberian coupled oroclines, but the sinuous geometry of the belt is not yet fully deciphered. Oroclines within the Western European Variscan belt, not the orogen itself, provide the true record of Pangean amalgamation. / Graduate

Page generated in 0.0457 seconds