• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PALEOGEOGRAPHIC AND TECTONIC IMPLICATIONS OF THE LATE PALEOZOIC ALLEGHANIAN OROGEN DEVELOPED FROM ISOTOPIC SEDIMENTARY PROVENANCE PROXIES FROM THE APPALACHIAN FORELAND BASIN

Becker, Thomas Patrick 01 January 2005 (has links)
The Alleghanian orogeny was a collision between the Gondwanan and Laurentian continents that produced the Pangean supercontinent. Mechanical and kinematic models of collisional orogens are believed to follow a critical taper geometry, where the tectonic imbrication of continental crust begins nearest to the edge of continental plate and advances toward the craton in a break- forward sequence. Studies of shear zones within the Alleghanian collisional orogen, however, suggest that most of the early deformation was translational. Propagation of craton-directed thrusts into the foreland did not occur until the latest Pennsylvanian in the southern Appalachians, and the middle-late Permian in the central Appalachians. Radiometric sedimentary provenance proxies have been applied to the late Mississippian-early Permian strata within the Appalachian foreland basin to determine the crustal composition and structural evolution of the orogen during the continental collision. U-Pb ages of detrital zircons from the early to middle Pennsylvanian sandstones suggest that most of the detritus within the Appalachian basin was recycled from Mesoproterozoic basement and Paleozoic strata of the Laurentian margin. The presence of Archean and late Paleoproterozoic age detrital zircons is cited as evidence of recycling of the Laurentian syn-rift and passive-margin sandstones. Detrital zircon ages from early-middle Permian-age sandstones of the Dunkard Group do not contain any Archean or Paleoproterozoic detrital-zircon ages, implying a source of sediment with a much more restricted age population, possibly the igneous and metamorphic internides or middle Paleozoic sandstones from the Appalachian basin. The persistance of 360-400 Ma K/Ar ages of detrital white mica suggest that the sediment was supplied from a source that was exhumed during the Devonian Acadian orogeny. Detrital-zircon and detrital-white-mica ages from Pennsylvanian-age sandstones indicate that the late Paleozoic orogen did not incorporate any significant synorogenic juvenile crust. The 87Sr/86Sr ratios of middle Pennsylvanian-early Permian lacustrine limestones within the Appalachian basin show a slight enrichment through time, suggesting that labile 87Sr-rich minerals in the Alleghanian hinterland are being exposed. Stable isotopic data from the lacustrine limestones also corroborates that the Appalachian basin became much more arid through time.
2

Oroclines of the Iberian Variscan belt: Tectonic and paleogeographic implications

Shaw, Jessica 24 August 2015 (has links)
The Western European Variscan orogenic belt is thought to represent the final in a series of Paleozoic continental collisions that culminated with the amalgamation of the supercontinent Pangea. The Iberian segment of the Variscan belt is characterized by Cantabrian orocline, which is 180º and convex toward the west. Several lines of evidence are at odds with classical interpretation of the Cantabrian orocline as the core of the much larger ‘Ibero-Armorican’ arc, suggesting instead that it is structurally continuous with a second more southerly and complimentary orocline. Paleocurrent data collected from the Lower Ordovician Armorican Quartzite of the deformed Iberian Paleozoic passive margin sequence confirm the existence of the so-called Central Iberian orocline. Structural continuity between the Cantabrian and Central Iberian oroclines suggests that they formed contemporaneously and in the same fashion. Mesoscale vertical-axis folds deforming slaty cleavage and shear fabric within the Ediacaran Narcea Slates have a dominant vergence toward the hinge of the Cantabrian orocline, suggesting that its formation was in part accommodated by a mechanism of flexural shear during buckling of a linear belt in response to an orogen parallel principle compressive stress. The Cantabrian-Central Iberian coupled oroclines therefore palinspastically restore to an originally linear belt 2300 km in length. Provenance analysis of detrital zircons sampled from the Armorican Quartzite along a 1500-km-long segment of the palinplastically restored Iberian passive margin indicate that it originated in a paleogeographic position stretching east-west along the northern limits of north African Gondwana, from the Arabian-Nubian Shield to the Saharan hinterland. Paleomagnetic data and the distribution of Variscan ophiolites support a model of mid-Paleozoic separation of the Variscan autochthon (Armorican continental ribbon) from north Gondwana preceding or in conjunction with a 90º rotation required to reorient the ribbon to a Late Carboniferous north-south trend. Formation of the Iberian coupled oroclines accommodated 1100 km of orogen parallel shortening. The Western European Variscan belt, North American Cordillera, and Eastern European Alpine system are orogens similarly characterized by both coupled oroclines and paleomagnetic inclinations that are significantly shallower than cratonic reference values. Palinspastic restoration of the Alaskan and Carpathian–Balkan coupled oroclines fully resolves inclination anomalies within the Cordillera and Eastern Alpine system, respectively. Inclination anomalies within the Iberian Variscan belt are only partially resolved through palinspastic restoration of the Iberian coupled oroclines, but the sinuous geometry of the belt is not yet fully deciphered. Oroclines within the Western European Variscan belt, not the orogen itself, provide the true record of Pangean amalgamation. / Graduate
3

Geochronology of Timor-Leste and seismo-tectonics of the southern Banda Arc

Ely, Kim Susan January 2009 (has links)
Arc–continent collision is a significant plate boundary process that results in crustal growth. Since the early stages of evolution are often obscured in mature orogens, more complete understanding of the processes involved in arc–continent collision require study of young, active collision settings. The Banda Arc presents an exceptional opportunity to study a young arc–continent collision zone. This thesis presents aspects of the geology and geochronology of Ataúro and the Aileu Complex of Timor-Leste, and the tectonics of the Banda Arc. / U–Pb dating of detrital zircons from the Aileu Complex by LA-ICPMS show major age modes at 270–440 Ma, 860–1240 Ma and 1460–1870 Ma. The youngest zircon populations indicate a maximum depositional age of 270 Ma. The detrital zircon age populations and evidence for juvenile sediments within the sequence favours a synorogenic setting of deposition of sediments sourced from an East Malaya – Indochina terrane. / Previous uncertainty in aspects of the cooling history for the Aileu Complex is resolved with 39Ar/40Ar geochronology of hornblende. Cooling ages of 6–10 Ma are established, with the highest metamorphic grade parts of the Complex yielding the older ages. Cooling ages of 10 Ma imply that metamorphism of the Aileu Complex must have commenced by at least ~12 Ma. Metamorphism at this time is attributed to an arc setting rather than the direct result of collision of the Australian continent with the Banda Arc, an interpretation consistent with the new provenance data. / Geological mapping of Ataúro, an island in the volcanic Banda Arc north of Timor, reveals a volcanic history of bi-modal subaqueous volcanism. 39Ar/40Ar geochronology of hornblende from dacitic lavas confirms that volcanism ceased by ~3 Ma. Following the cessation of volcanism, coral reef marine terraces have been uplifted to elevations of 700 m above sea level. Continuity of the terraces at constant elevations around the island reflects regional-scale uplift most likely linked to sublithospheric processes such as slab detachment. / North of Timor, the near complete absence of intermediate depth seismicity beneath the inactive segment of the arc is attributed to a slab window that has opened in the collision zone and extends to 350 km below the surface. Differences in seismic moment release around this slab window indicate asymmetric rupture, propagating to the east at a much faster rate than to the west. If the lower boundary of this seismic gap signifies the original slab rupture then the slab window represents ~4 m.y. of subsequent subduction and implies that collision preceded the end of volcanism by at least 1 m.y. / Variations in seismic moment release and stress state across the transition from subduction of oceanic crust to arc–continent collision in the Banda Arc are investigated using earthquake catalogues. It is shown that the slab under the western Savu Sea is unusual in that intermediate depth (70–300 km) events indicate that the slab is largely in down-dip compression at this depth range, beneath a region of the arc that has the closest spacing of volcanoes in the Sunda–Banda arc system. This unusual state of stress is attributed to subduction of a northern extension of the Scott Plateau. Present day deformation in the Savu Sea region may be analogous with the earliest stages of collision north of Timor.

Page generated in 0.1117 seconds