• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Real-time dynamics for interactive environments

Timchenko, Alexander Nikolai 15 May 2009 (has links)
This thesis examines the design and implementation of an extensible objectoriented physics engine framework. The design and implementation consolidates concepts from the wide literature in the field and clearly documents the procedures and methods. Two primary dynamic behaviors are explored: rigid body dynamics and articulated dynamics. A generalized collision response model is built for rigid bodies and articulated structures which can be adapted to other types of behaviors. The framework is designed around the use of interfaces for modularity and easy extensibility. It supports both a standalone physics engine and a supplement to a distributed immersive rendering environment. We present our results as a number of scenarios that demonstrate the viability of the framework. These scenarios include rigid bodies and articulated structures in free-fall, collision with dynamic and static bodies, resting contact, and friction. We show that we can effectively combine different dynamics into one cohesive structure. We also explain how we can efficiently extend current behaviors to develop new ones, such as altering rigid bodies to produce different collision responses or flocking behavior. Additionally, we demonstrate these scenarios in both the standalone and the immersive environment.
2

Real-time dynamics for interactive environments

Timchenko, Alexander Nikolai 10 October 2008 (has links)
This thesis examines the design and implementation of an extensible objectoriented physics engine framework. The design and implementation consolidates concepts from the wide literature in the field and clearly documents the procedures and methods. Two primary dynamic behaviors are explored: rigid body dynamics and articulated dynamics. A generalized collision response model is built for rigid bodies and articulated structures which can be adapted to other types of behaviors. The framework is designed around the use of interfaces for modularity and easy extensibility. It supports both a standalone physics engine and a supplement to a distributed immersive rendering environment. We present our results as a number of scenarios that demonstrate the viability of the framework. These scenarios include rigid bodies and articulated structures in free-fall, collision with dynamic and static bodies, resting contact, and friction. We show that we can effectively combine different dynamics into one cohesive structure. We also explain how we can efficiently extend current behaviors to develop new ones, such as altering rigid bodies to produce different collision responses or flocking behavior. Additionally, we demonstrate these scenarios in both the standalone and the immersive environment.

Page generated in 0.0618 seconds