11 |
Application of Artificial Neural Network on The Prediction of Ambient Air QualityLin, Yat-Chen 30 July 2002 (has links)
The air quality in Kaohsiung and Ping-Dong district is the worst in Taiwan. The air pollution episodes in Kaohsiung are attributed to high concentrations of PM10 and O3. Among them, over half of the episodes result from PM10. In addition to Pollutant Standards Index (PSI), atmospheric visibility is also an indicator of ambient air quality. Citizens always complain about the impairment of visibility because it can be visualized directly. Visibility is closely correlated to both air pollutants and meteorological condition. Extinction of visible light by fine particles is the major reason for visibility impairment.
In this study, an artificial neural network was applied to predict the concentration of PM10 and atmospheric visibility. The objectives of this study were to investigate the effects of meteorological factor and air pollutants on visibility and to apply artificial neural network to predict the concentration of PM10 and atmospheric visibility.
The measured PM10 data were divided into two parts (i.e. summer and winter, ) to understand whether different season affect the prediction of PM10 concentration. The modeling results showed that the optimum input variables included the PM10 concentration, atmospheric pressure, surface radiation, relative humidity, atmospheric temperature, and cloud condition. The network outputs showed high correlation with measured PM10 concentration (R=0.876) in the whole-year set. Furthermore, the prediction of summer set also showed high correlation with measured PM10 concentration (R=0.753). The winter set demonstrated the worse prediction among three sets, and showed medium correlation with measured PM10 concentration (R=0.553).
The visibility network test was conducted by two stages. The first stage (set-1~set-3) showed that relative humidity, atmospheric temperature, and cloud condition were the most important meteorological factors, while PM10, O3, and NO3 were the most important air pollutants on the prediction of atmospheric visibility. The prediction of set-1 considering only meteorological factors was the worst (R=0.586), while set-3 was the best and showed medium correlation with measured atmospheric visibility (R=0.633). The second stage (set-4 and set-5) increased the hidden neuron numbers and input variables, and added atmospheric visibility in the input variables. Although the correlation coefficients between predicted and measured data did not increase, the prediction of atmospheric visibility had significant improvement.
Finally, a short-term prediction of PM10 and atmospheric visibility was conducted and validated by the level of PSI values and atmospheric visibility. Prediction results showed that the accuracy of PM10 prediction was 76.9%, while the prediction of atmospheric visibility by set-3 network demonstrated an accuracy of 76.9%. Moreover, no significant difference of prediction was detected by using either three-level or five-level visibility systems.
|
12 |
Secret sharing using artificial neural networkAlkharobi, Talal M. 15 November 2004 (has links)
Secret sharing is a fundamental notion for secure cryptographic design. In a secret sharing scheme, a set of participants shares a secret among them such that only pre-specified subsets of these shares can get together to recover the secret. This dissertation introduces a neural network approach to solve the problem of secret sharing for any given access structure. Other approaches have been used to solve this problem. However, the yet known approaches result in exponential increase in the amount of data that every participant need to keep. This amount is measured by the secret sharing scheme information rate. This work is intended to solve the problem with better information rate.
|
13 |
USING GEOSTATISTICS, PEDOTRANSFER FUNCTIONS TO GENERATE 3D SOIL AND HYDRAULIC PROPERTY DISTRIBUTIONS FOR DEEP VADOSE ZONE FLOW SIMULATIONSFang, Zhufeng January 2009 (has links)
We use geostatistical and pedotrasnfer functions to estimate the three-dimensional distributions of soil types and hydraulic properties in a relatively large volume of vadose zone underlying the Maricopa Agriculture Center near Phoenix, Arizona. Soil texture and bulk density data from the site are analyzed geostatistically to reveal the underlying stratigraphy as well as finer features of their three-dimensional variability in space. Such fine features are revealed by cokriging soil texture and water content measured prior to large-scale long-term infiltration experiments. Resultant estimates of soil texture and bulk density data across the site are then used as input into a pedotransfer function to produce estimates of soil hydraulic parameter (saturated and residual water content θs and θr, saturated hydraulic conductivity Ks, van Genuchten parameters αand n) distributions across the site in three dimensions. We compare these estimates with laboratory-measured values of these same hydraulic parameters and find the estimated parameters match the measured well for θs, n and Ks but not well for θr nor α, while some measured extreme values are not captured. Finally the estimated soil hydraulic parameters are put into a numerical simulator to test the reliability of the models. Resultant simulated water contents do not agree well with those observed, indicating inverse calibration is required to improve the modeling performance. The results of this research conform to a previous work by Wang et al. at 2003. Also this research covers the gaps of Wang’s work in sense of generating 3-D heterogeneous fields of soil texture and bulk density by cokriging and providing comparisons between estimated and measured soil hydraulic parameters with new field and laboratory measurements of water retentions datasets.
|
14 |
A SELF-LEARNING AUDIO PLAYER THAT USES A ROUGH SET AND NEURAL NET HYBRID APPROACHZuo, Hongming 16 October 2013 (has links)
A
self-‐learning
Audio
Player
was
built
to
learn
users
habits
by
analyzing
operations
the
user
does
when
listening
to
music.
The
self-‐learning
component
is
intended
to
provide
a
better
music
experience
for
the
user
by
generating
a
special
playlist
based
on
the
prediction
of
users
favorite
songs.
The
rough
set
core
characteristics
are
used
throughout
the
learning
process
to
capture
the
dynamics
of
changing
user
interactions
with
the
audio
player.
The
engine
is
evaluated
by
simulation
data.
The
simulation
process
ensures
the
data
contain
specific
predetermined
patterns.
Evaluation
results
show
the
predictive
power
and
stability
of
the
hybrid
engine
for
learning
a
users
habits
and
the
increased
intelligence
achieved
by
combining
rough
sets
and
NN
when
compared
with
using
NN
by
itself.
|
15 |
Desenvolvimento de redes neurais para previsão de cargas elétricas de sistemas de energia elétrica /Lopes, Mara Lúcia Martins. January 2005 (has links)
Orientador: Carlos Roberto Minussi / Banca: Francisco Villarreal Alvarado / Banca: Nobuo Oki / Banca: Geraldo Roberto Martins da Costa / Banca: Mário Oleskovicz / Resumo: Nos dias atuais, principalmente pelo fato de alguns sistemas serem desregulamentados, o estudo dos problemas de análise, planejamento e operação de sistemas de energia elétrica é de extrema importância para o funcionamento do sistema. Para isso é necessário que se obtenha, com antecedência, o comportamento da carga elétrica com o propósito de garantir o fornecimento de energia aos consumidores de forma econômica, segura e contínua. Este trabalho propõe o desenvolvimento de redes neurais artificiais utilizadas para resolver o problema de previsão de cargas elétricas. Para tanto, inicialmente, propôs-se a introdução de melhorias na rede neural feedforward com treinamento realizado utilizando o algoritmo retropropagação. Neste caso, foi desenvolvida/implementada a adaptação dos parâmetros de inclinação e translação da função sigmóide (função de ativação da rede neural). A inclusão desta nova estrutura de redes neurais produziu melhores resultados, se comparado à rede neural retropropagação convencional. Essas arquiteturas proporcionam bons resultados, porém, são estruturas de redes neurais que possuem o problema de convergência. O problema de previsão de cargas elétricas a curto-prazo necessita de uma rede neural que forneça uma saída de forma rápida e eficaz. No intuito de solucionar os problemas encontrados com o algoritmo retropropagação foi desenvolvida/implementada uma rede neural baseada na arquitetura ART (Adaptive Rossonance Theory), denominada rede neural ART&ARTMAP nebulosa, aplicada ao problema de previsão de carga elétrica. Trata-se, por conseguinte, da principal contribuição desta tese. As redes neurais, baseadas na arquitetura ART, possuem duas características fundamentais que são de extrema importância para o desempenho da rede (estabilidade e plasticidade), que permite a implementação do treinamento de modo contínuo...(Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Nowadays due to the deregulamentation it is very important to study the problems of analyzing, planning and operation of electric power systems. For a reliable operation it is necessary to know previously the behavior of the load to guarantee the energy providing to the users with security and continuity and in an economic way. This work proposes to develop artificial neural networks to solve the problem of electric load forecasting. First, it is introduced some improvements on the feedforward neural network, with the training effectuated with the backpropagation algorithm. The improvement was the adaptation of the inclination and translation parameters of the sigmoid function (activation function of the neural network). The inclusion of this new structure provides better results if compared to the conventional backpropagation algorithm. These architectures provide good results, although they are structures that have some convergence problems. The short term electric load forecasting problem needs a neural network that provide a fast and efficient output. To solve this problem a neural network based on the ART (Adaptive Ressonance Theory), called_ fuzzy ART&ARTMAP applied to the load-forecasting problem, was developed and implemented._This is one of the contributions of this work. Neural networks based on the ART architecture have two important characteristics for the network performance, which are stability and plasticity, allowing the continuous training. The fuzzy ART&ARTMAP neural network reduces the imprecision of the results by a mechanism that separates the binary and analogical data and processing them separately. This represents a quality and an improvement on the results (reduction of the processing time and better precision), if compared to the neural network with backpropagation training (often considered as a benchmark in precision by the specialized...(Complete abastract click electronic access below) / Doutor
|
16 |
An artificial neural network approach for short-term wind speed forecastDatta, Pallab Kumar January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Anil Pahwa / Electricity generation capacity from different renewable sources has been significantly growing worldwide in recent years, specially wind power. Fast dispatch of wind power provides flexibility for spinning reserve. However, wind is intermittent in nature. Thus, stable grid operations and energy management are becoming more challenging with the increasing penetration of wind in power systems. Efficient forecast methods can help the scenario. Many wind forecast models have been developed over the years. Highly effective models with the combination of numerical weather prediction and statistical models also exist at present. This study intends to develop a model to forecast hourly wind speed using an artificial neural network (ANN) approach for effective and fast operation with minimum data. The procedure is outlined in this work and the performance of the ANN model is compared with the persistence forecast model.
|
17 |
Prediction of Whole-body Lifting Kinematics using Artificial Neural NetworksPerez, Miguel A. 25 August 2005 (has links)
Musculoskeletal pain and injury continue to be prevalent sources of disability for thousands of workers in the U.S. every year. Proactive approaches to the reduction of this incidence attempt to prevent the injury by effecting task design so that human capabilities and limitations are driving factors in the task design and analysis process. Knowledge about the posture and kinematics that might be employed by an individual in performing a task is an important element of these proactive approaches to task design and analysis, especially for manual materials handling (i.e., lifting) exertions. In turn, accurate models that predict posture and kinematics can reduce the need for empirical postural and kinematic data in this task development process. Artificial neural networks were used in this investigation to achieve these predictions. As input, these networks received information about lift characteristics (e.g. target location, movement duration) and returned a predicted set of joint angles. Two types of networks were created, one to predict static posture based on target position, the second to predict the time histories of several joint angles (i.e., kinematics) as an object is lifted or lowered. Initial networks were created for sagittally symmetric lifts (two dimensions), but the final set of networks was expanded to make predictions for symmetric and asymmetric lifts in three dimensions. Networks were trained and verified with an empirical set of non-cyclic lifting motions. Notably, the within-subject variability in these motions was similar in magnitude to the associated between-subjects variability. In general, the networks were able to assimilate the data relatively well, especially in predicting kinematics, where root mean square errors were typically smaller than 20 degrees. These errors were similar in magnitude to the levels of within-subject variability observed in the dataset. Network performance also compared favorably to other existing models, typically resulting in smaller prediction errors than these other approaches. In addition, the internal connections of trained networks were examined to infer hypothetical motor control strategies. Results of this examination showed that feedback was an important component in providing kinematic predictions, whereas posture prediction benefited greatly from knowledge about individual anthropometry. Finally, potential improvements to increase prediction accuracy are discussed. Overall, these results support the use of artificial neural network models to predict posture and kinematics for lifting tasks. / Ph. D.
|
18 |
A Comparison of Artificial Neural Network Classifiers for Analysis of CT Images for the Inspection of Hardwood LogsHe, Jing 01 April 1998 (has links)
This thesis describes an automatic CT image interpretation approach that can be used to detect hardwood defects. The goal of this research has been to develop several automatic image interpretation systems for different types of wood, with lower-level processing performed by feed forward artificial neural networks. In the course of this work, five single-species classifiers and seven multiple-species classifiers have been developed for 2-D and 3-D analysis. These classifiers were trained with back-propagation, using training samples of three species of hardwood: cherry, red oak and yellow poplar. These classifiers recognize six classes: heartwood (clear wood), sapwood, knots, bark, split s and decay. This demonstrates the feasibility of developing general classifiers that can be used with different types of hardwood logs. This will help sawmill and veneer mill operators to improve the quality of products and preserve natural resources. / Master of Science
|
19 |
Investigation into Regression Analysis of Multivariate Additional Value and Missing Value Data Models Using Artificial Neural Networks and Imputation TechniquesJagirdar, Suresh 01 October 2008 (has links)
No description available.
|
20 |
Environmental site characterization via artificial neural network approachMryyan, Mahmoud January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Yacoub M. Najjar / This study explored the potential use of ANNs for profiling and characterization of various environmental sites. A static ANN with back-propagation algorithm was used to model the environmental containment at a hypothetical data-rich contaminated site. The performance of the ANN profiling model was then compared with eight known profiling methods. The comparison showed that the ANN-based models proved to yield the lowest error values in the 2-D and 3-D comparison cases. The ANN-based profiling models also produced the best contaminant distribution contour maps when compared to the actual maps. Along with the fact that ANN is the only profiling methodology that allows for efficient 3-D profiling, this study clearly demonstrates that ANN-based methodology, when properly used, has the potential to provide the most accurate predictions and site profiling contour maps for a contaminated site.
ANN with a back-propagation learning algorithm was utilized in the site characterization of contaminants at the Kansas City landfill. The use of ANN profiling models made it possible to obtain reliable predictions about the location and concentration of lead and copper contamination at the associated Kansas City landfill site. The resulting profiles can be used to determine additional sampling locations, if needed, for both groundwater and soil in any contaminated zones.
Back-propagation networks were also used to characterize the MMR Demo 1 site. The purpose of the developed ANN models was to predict the concentrations of perchlorate at the MMR from appropriate input parameters. To determine the most-appropriate input parameters for this model, three different cases were investigated using nine potential input parameters. The ANN modeling used in this case demonstrates the neural network’s ability to accurately predict perchlorate contamination using multiple variables. When comparing the trends observed using the ANN-generated data and the actual trends identified in the MMR 2006 System Performance Monitoring Report, both agree that perchlorate levels are decreasing due to the use of the Extraction, Treatment, and Recharge (ETR) systems.
This research demonstrates the advantages of ANN site characterization modeling in contrast with traditional modeling schemes. Accordingly, characterization task-related uncertainties of site contaminations were curtailed by the use of ANN-based models.
|
Page generated in 0.0813 seconds